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Abstract

This work concerns the formulation of a unified coupled solution procedure for fluids-structures problems. 

Although the eventual goal is to apply the methodology to rotorcraft applications, the present study is fo-

cused on fundamental algorithmic issues and testing. Specifically, we present the formulation of the struc-

tural dynamics using a common finite-volume infrastructure. The same flux procedures and time-iterative 

framework is used for both the fluids and the structural equations. Moreover, a set of pseudo-structural 

equations are used to describe the motion of the fluid dynamic mesh to conform to the deforming solid 

surface. We study the numerical properties of the structural dynamics systems including the eigenvalues 

or wave speeds and use this information to formulate appropriate computational solution strategies. The 

unified algorithm adopts a three-solver partitioning---one each for the fluids, mesh and structures---that 

are embedded within a dual-time-based sub-iterative framework. At each physical time-level, we iterate 

between the three solvers to insure that the interface conditions are properly represented at the correct 

time instance. Each solver module is implemented in Fortran-90 and wrapped within a Python environ-

ment. Python scripts control the execution sequence of the solver modules and the transfer of interface 

data between the modules. Systematic testing of the structures, fluids and mesh modules are carried out 

to verify that each component is operating correctly. Following this, detailed testing of the coupled fluid-

structure system is presented for representative one-dimensional cases. In all cases, grid resolution stud-

ies and order of accuracy verification are carried out. Comparisons of the coupled method with the con-

ventional serial staggered (CSS) and generalized serial staggered (GSS) schemes are also presented. 
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1.0 Introduction
1.1 Background

For many aerospace applications, successful computational design and analysis involves robust, accu-

rate and efficient coupling between computational fluid dynamics (CFD) of the external aerodynamics and 

computational structural dynamics (CSD) of the airframe.  This is particularly the case for rotorcraft appli-

cations, wherein the coupling between fluids and structures is critical to the successful prediction of air-

craft performance, structural fidelity, stability, maneuverability, safety and noise [2]. Previous CFD-CSD 

studies in rotorcraft applications have involved coupling dissimilar techniques for the fluids and structures 

(usually with legacy codes), and has been largely limited to steady flight and benign maneuvers [3-6].  

Moreover, structural solutions in rotorcraft problems are typically obtained using beam models and high-

fidelity structural solutions have not been used in rotorcraft simulations [7-9]. Given these challenges, the 

present research is targeted towards investigating a fundamentally different approach for fluid-structure 

coupling---one based on a unified and high-fidelity computational paradigm for fluids, structures and mesh 

motions.  

A unified coupled solution framework promises many fundamental advantages. Specifically, it formulates 

the fluid and structural equations as a coupled system from the outset and ensures proper conservation 

of fluxes at the fluid-structure interface, uniform temporal and spatial discretization accuracy, and strong 

coupling of the governing equations for robustness and solution efficiency. Moreover, it facilitates the con-

tinued evolution of fundamental CFD and CSD methodologies by making enhancements automatically 

available to both equation systems. Above all, the inherent robustness of the unified approach would 

broaden the range of fluid-structures problems that can be successfully tackled.  

The proposed unified computational platform comprises of:

• Common discretization framework based on finite volume procedures for the constituent partial differen-

tial equations representing fluid flow, structural deflections and mesh motions, 

• Coupled time-integration, linearization and solution strategies, 

• Modular-CFD infrastructure for the solution of different sets of partial differential equations, and   

• Python-based framework and domain connectivity tools to provide the software infrastructure for time-

advancement of the CFD solutions

The research focus is on fundamental algorithmic issues of conservation, robustness, efficiency and ac-

curacy for moving and deforming body problems, including appropriate preconditioning for stiff time-

scales and fully implicit solutions for robustness. The resulting computational platform is tested and vali-

dated using a variety of 1D test problems, and the formulation is also extended to the multi-dimensional 

system and preliminary two-dimensional results are presented. 

1.2 Research Objectives and Scope

The overall objective of the proposed research is to advance the state of the art in CFD-CSD coupling 

algorithms for aerodynamics with eventual application to rotorcraft problems. The current study consists 

of a feasibility study geared towards developing the fundamental algorithmic and code infrastructures and 

testing them for representative test problems. 

The specific objectives of this work are:
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1. Fundamental CFD/CSD algorithm development: The theoretical basis of CFD-CSD coupling 

schemes is established by expressing the structural and fluid dynamics and mesh systems in a common 

finite volume framework. Importantly, the structural equations are used to describe the motion and defor-

mation of the elastic solid material as well as the motion and deformation of a fictitious material that rep-

resents the fluid-dynamic mesh. Thus, the complete system of equations involves the solution of the fluid 

dynamics and pseudo-structural dynamics in the aerodynamics zone and the physical structural equa-

tions in the solid-dynamics zone. The equations in the two zones communicate through appropriate inter-

face conditions. 

Analysis of the eigenvalues and integral finite-volume form of the structural dynamics equations are pre-

sented to under-score the commonality with the fluid-dynamics equations. This is given in both 1D and 2D 

to systematically address multi-dimensional formulation issues. The full equation system is then formu-

lated as a single unified system and the algorithms to discretize and solve the equations are presented. 

Specific issues related to satisfying the discrete Geometric Conservation Law (GCL) [24,25], the formula-

tion of appropriate preconditioning scalings for iterative solution [10-13] and interfacial equations are also 

discussed. Finally, the coupled approach is also contrasted with classical and generalized staggered solu-

tion schemes [14, 15, 18-21].  

2. Development of a unified computational code: The unified algorithm is implemented within a com-

mon computational platform that is based upon finite-volume integration of the fluid dynamics, structural 

dynamics and mesh motion equations. A modular code structure is used to automatically allow for the 

solution of varying numbers of partial differential equations for the fluids and structural domains. The dif-

ferent systems share the same discretization and time-integration procedures, which simplifies the code 

development process and avoids unnecessary duplication of common elements such as flux discretiza-

tion and implicit solution. 

3. Development of python-based framework infrastructure: The fluids, structures and mesh motion 

codes are combined together using a python-based framework. The Python scripts are used to carry out 

all data communication between the individual modules, and, moreover,  they carry out the necessary 

time-integration process of the fluids and structural zones. This is done in such a manner as to ensure 

that the equations are solved in a fully-coupled fashion at the non-linear level. 

4. Computational verification and validation:  The developed platform is systematically tested for a 

variety of problems. First, simple verification tests are used to check the individual fluids and structural 

modules. Secondly, the framework is applied to a one-dimensional shock-tube fitted with an elastic mate-

rial on one-end. The coupled solutions are used to assess temporal accuracy, robustness, GCL issues 

and compare against segregated solution techniques. Future work will address extensions of these stud-

ies to rotorcraft problems [16,17]. 
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2.0 Structural Dynamics Equations

Fundamental development of any coupled system of equations requires that the system be treated within 

a single unified framework. Such an approach ensures that all potential interactions and coupling be-

tween the constituent equations are automatically reflected in the computational procedures. It is impor-

tant to note that this is true even if the coupled systems are eventually solved in a partitioned manner in 

the final solution algorithm (for instance, due to parallel domain decomposition). Accordingly, we start by 

expressing the governing equations in a common vector form and by describing a unified finite-volume 

discretization of these equations. We pay special attention to the structural dynamics equation because 

the finite-volume form of these equations is relatively novel and their numerical characteristics are not 

well-established in the literature. We then discuss the details of the unified algorithm including the fully 

implicit time-integration, linearization and solution schemes, as well as issues related to the Geometric 

Conservation Law, preconditioning and fluid-structural interface conditions. 

2.1 Differential Form of the Structural Dynamics Equations

We start with the structural system written in differential form: 

∂Qs

∂t
+

∂Es,i

∂xi
=

∂Vs,i

∂xi
+ Hs

.....(2.1)

where:

Qs =
�

ρ
s
u

s
j

d
s
j

�
Es,i =

�
ρ

s
u

s
i u

s
j

u
s
i d

s
j

�
Vs,i =

�
τ

s
ij

0

�
Hs =

�
f

s
j + b

s
j + cu

s
j

u
s
j + d

s
j∇ · �V

s

�

.....(2.2)

and:

τ s
ij =

Es

2(1 + νs)

�∂ds
i

∂xj
+

∂ds
j

∂xi

�
+ δij

Esνs

(1 + νs)(1− 2νs)
∇ · �ds

.....(2.3)

Specifically, the 2D structural equations become:

∂ρsus

∂t
+

∂ρsus2

∂x
+

∂ρsusvs

∂y
=

∂

∂x

��
E� +

E�ν

1− 2ν

�
∂ds

x

∂x
+

E�ν

1− 2ν

∂ds
y

∂y

�
+

∂

∂y

�
E�

2
∂ds

x

∂y
+

E�

2
∂ds

y

∂x

�

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ...(2.4)

∂ρsvs

∂t
+

∂ρsusvs

∂x
+

∂ρsvs2

∂y
=

∂

∂x

�
E�

2
∂ds

x

∂y
+

E�

2
∂ds

y

∂x

�
+

∂

∂y

�
E�ν

1− 2ν

∂ds
x

∂x
+

�
E� +

E�ν

1− 2ν

�
∂ds

y

∂y

�

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ...(2.5)

where we have defined E
� = Es/(1 + ν) for convenience.

The remaining equations which close the above system are simply given as:
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Dd

Dt
= u

.....(2.6)

Dds
y

Dt
= vs

.....(2.7)

Note the use of the substantial derivative. In other words, the velocity of a particle (in the solid medium) is 

given by the rate of change of the displacement following the particle. This formulation will be clarified 

once below when we examine the equations in their more familiar scalar transport forms. Or:

∂ds
x

∂t
+ us ∂ds

x

∂x
+ vs ∂ds

x

∂y
= us

.....(2.8)

∂ds
y

∂t
+ us ∂ds

y

∂x
+ vs ∂ds

y

∂y
= vs

.....(2.9)

Alternately, we can write in the following conservative form:

∂ds
x

∂t
+

∂usds
x

∂x
+

∂vsds
x

∂y
= us + ds

x∇ · �V s

.....(2.10)

∂ds
y

∂t
+

∂usds
y

∂x
+

∂vsds
y

∂y
= vs + ds

y∇ · �V s

.....(2.11)

which is the form given in Eqn. (2.1). 

Generalized Coordinates

We now transform from the fixed Cartesian coordinate frame to a generalized space-time coordinate sys-

tem. The situation may be visualized as follows (shown in 1D for representation simplicity). The figure on 

the left shows a one-dimensional deforming solid material. We note that the displacement of the points 

results in a skewing of the cartesian grid. This may now be transformed to a generalized coordinate sys-

tem, which may be so defined that it retains its rigid shape as shown. In other words, the transformed grid 

is defined as a mapping of the deformed material onto a constant length.
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x

t

ξ

τ

Figure 2.1: Schematic of physical space-time mesh and generalized space-time mesh. 

In two dimensions, this transformation may be written as:

ξ = ξ(x, y, t) η = η(x, y, t) τ = t.....(2.12)

Note that the τ  is the transformed time-coordinate. 

We then have:

dξ = ξxdx + ξydy + ξtdt.....(2.13)

dη = ηxdx + ηydy + ηtdt.....(2.14)

dτ = τxdx + τydy + τtdt.....(2.15)

Note:  τx = τy = 0
. 

Taking partial derivatives wrt to ξ, η and τ and since τx = τy = 0, we get:




ξx ξy ξt

ηx ηy ηt

0 0 τt



×




xξ xη xτ

yξ yη yτ

0 0 tτ



 =




1 0 0
0 1 0
0 0 1





.....(2.16)

We can define the determinant of transformation Jacobian (first term on the LHS):

J = τt(ξxηy − ξyηx) = ξxηy − ξyηx.....(2.17)

Solving the above system, we get:

xξ = ηy/J yξ = −ηx/J xη = −ξy/J yη = ξx/J
.....(2.18)
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xτ = (ξyηt − ηyξt)/J yτ = −(ξxηt − ηxξt)/J .....(2.19)

The last two terms can be recognized to be the mesh (or in our case the structural) velocities: 

xτ |ξ,η = us yτ |ξ,η = vs
.....(2.20)

We can likewise write the above system in inverse form as:




xξ yξ 0
xη yη 0
xτ yτ tτ



×




ξx ηx 0
ξy ηy 0
ξt ηt τt



 =




1 0 0
0 1 0
0 0 1





.....(2.21)

The determinant of the inverse transformation is:

J � = xξyη − xηyξ.....(2.22)

Substituting for 
xξ, yξ, xη and 

yη, we get:

J � = xξyη − xηyξ =
�

ηyξx − (−ξy)(−ηx)
�

/J2 = J/J2 = 1/J
.....(2.23)

We further recognize that J' equivalently describes the cell-volume. 

Finally, we can solve the above system to determine the inverse variables. The only useful ones in addi-

tion to those already described in Eqns. (2.18) and (2.19) are:

ξt = J(yτxη − xτyη) ηt = J(xτyξ − yτxξ).....(2.24)

With that algebra, we are now ready to transform the equations of motion to the generalized coordinate 

system:

∂

∂t
= ξt

∂

∂ξ
+ ηt

∂

∂η
+

∂

∂τ .....(2.25)

∂

∂x
= ξx

∂

∂ξ
+ ηx

∂

∂η .....(2.26)

∂

∂y
= ξy

∂

∂ξ
+ ηy

∂

∂η .....(2.27)

We next apply this transformation to the structural system. 

Transformed Equations

The 2D structural equations of motion from Eqn. (2.1):
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∂Q
s

∂t
+

∂E
s

∂x
+

∂F
s

∂y
=

∂V
s
x

∂x
+

∂V
s
y

∂y
+ H

s

.....(2.1)

In transformed coordinates:

∂Q
s

∂τ
+ ξt

∂Q
s

∂ξ
+ ηt

∂Q
s

∂η
+ ξx

∂E
s

∂ξ
+ ηx

∂E
s

∂η
+ ξy

∂F
s

∂ξ
+ ηy

∂F
s

∂η
=

ξx
∂V

s
x

∂ξ
+ ηx

∂V
s
x

∂η
+ ξy

∂V
s
y

∂ξ
+ ηy

∂V
s
y

∂η
+ H

s

.....(2.28)

It is convenient to divide through by J and then put the terms in conservative form:

∂Q
s
/J

∂τ
+

∂

∂ξ

�
Q

s
ξt + E

s
ξx + F

s
ξy

�
/J +

∂

∂η

�
Q

s
ηt + E

s
ηx + F

s
ηy

�
/J −

∂

∂ξ

�
V

s
x ξx + V

s
y ξy

�
/J − ∂

∂η

�
V

s
x ηx − V

s
y ηy

�
/J −H/J = Q

s ∂(1/J)
∂τ

+

Q
s ∂ξt/J

∂ξ
+ E

s ∂ξx/J

∂ξ
+ F

s ∂ξy/J

∂ξ
+ Q

s ∂ηt/J

∂η
+ E

s ∂ηx/J

∂η
+ F

s ∂ηy/J

∂η
−

V
s
x

∂ξx/J

∂ξ
− V

s
y

∂ξy/J

∂ξ
− V

s
x

∂ηx/J

∂η
+ V

s
y

∂ηy/J

∂η .....

(2.29)

Let us just consider the terms on the RHS:

Qs ∂(1/J)
∂τ

+ Qs ∂ξt/J

∂ξ
+ Es ∂ξx/J

∂ξ
+ F s ∂ξy/J

∂ξ
+ Qs ∂ηt/J

∂η
+ Es ∂ηx/J

∂η
+

F s ∂ηy/J

∂η
− V s

x
∂ξx/J

∂ξ
− V s

y
∂ξy/J

∂ξ
− V s

x
∂ηx/J

∂η
− V s

y
∂ηy/J

∂η
=

Qs

�
∂(1/J)

∂τ
+

∂ξt/J

∂ξ
+

∂ηt/J

∂η

�
+Es

�
∂ξx/J

∂ξ
+

∂ηx/J

∂η

�
+F s

�
∂ξy/J

∂ξ
+

∂ηy/J

∂η

�

− V s
x

�
∂ξx/J

∂ξ
+

∂ηx/J

∂η

�
− V s

y

�
∂ξy/J

∂ξ
+

∂ηy/J

∂η

�

.....(2.30)

Now, look at each of the parenthetical terms:

�
∂(1/J)

∂τ
+

∂ξt/J

∂ξ
+

∂ηt/J

∂η

�
=

�
xξτyη + xξyητ − xητyξ − xηyξτ + yτξxη +

yτxηξ − xτξyη − xτyηξ + xτηyξ + xτyξη − yτηxξ − yτxξη

�
= 0

.....(2.31)
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Likewise:

�
∂ξx/J

∂ξ
+

∂ηx/J

∂η

�
= yηξ − yξη = 0

.........(2.32)

�
∂ξy/J

∂ξ
+

∂ηy/J

∂η

�
= −xηξ + xξη = 0

.....(2.33)

Thus, the entire RHS in Eqn. (2.30) is zero, leading to the following governing equation set in transformed 

coordinates:

∂Q
s
/J

∂τ
+

∂

∂ξ

�
Q

s
ξt + E

s
ξx + F

s
ξy

�
/J +

∂

∂η

�
Q

s
ηt + E

s
ηx + F

s
ηy

�
/J −

∂

∂ξ

�
V

s
x ξx + V

s
y ξy

�
/J − ∂

∂η

�
V

s
x ηx + V

s
y ηy

�
/J −H/J = 0

.....

(2.34)

or:

∂Q̂
s

∂τ
+

∂Ê
s

∂ξ
+

∂F̂
s

∂η
−

∂V̂
s
ξ

∂ξ
−

∂V̂
s
η

∂η
− Ĥ = 0

.....(2.35)

Let us next examine the flux vectors Ês
 and F̂ s

: 

Ês =
�
Qsξt + Esξx + F sξy

�
/J

  
= Qs(yτxη − xτyη) + Esyη − F sxη.....(2.36)

Noting that 
xτ |ξ,η = us, yτ |ξ,η = vs

, we have

Ês = Qs(vsxη − usyη) + Esyη − F sxη.....(2.37)

Further, noting that E
s = usQs

 and F
s = vsQs

, we get: Ês = 0. Likewise, we can surmise that 

F̂ s = 0 as well. 

Thus, Eqn. (2.35) becomes:

∂Q̂
s

∂τ
−

∂V̂
s
ξ

∂ξ
−

∂V̂
s
η

∂η
− Ĥ = 0

.....(2.38)

The above equation system contains the structural momentum equations and the closure equations for 

the structural (or mesh) velocities. Note that the latter equations could have been transformed separately, 
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but we will simply take Eqn. (2.38) and substitute in Eqn. (2.1) and see what the final form of these equa-

tions look like. 

∂ds
j/J

∂τ
= (us

j + ds
j∇ · �V s)/J

.....(2.39)

This can be simplified further (learning from our 1D experience):

∂ds
j/J

∂τ
=

us
j

J
+

ds
j

J

�
ξx

∂us

∂ξ
+ ηx

∂us

∂η

�
+

ds
j

J

�
ξy

∂vs

∂ξ
+ ηy

∂vs

∂η

�

.....(2.40)

Multiplying by J:

∂ds
j

∂τ
−

ds
j

J

∂J

∂τ
= us

j + ds
j

�
ξx

∂us

∂ξ
+ ηx

∂us

∂η

�
+ ds

j

�
ξy

∂vs

∂ξ
+ ηy

∂vs

∂η

�

.....(2.41)

Now,  u
s = xτ  and v

s = yτ  and (1/J)dJ = −Jd(1/J)

∂ds
j

∂τ
= us

j +
ds

j

J

∂J

∂τ
+ ds

j

�
ξxxτξ + ηxxτη

�
+ ds

j

�
ξyyτξ + ηyyτη

�

    

= us
j − ds

jJ(xξyητ + xξτyη − xηyξτ − xητyξ) + ds
j

�
ξxxτξ + ηxxτη

�
+ ds

j

�
ξyyτξ + ηyyτη

�

                                                                                                                                         .....(2.42)

Substituting for ξx, ξy, ηx, ηy in terms of 
xη, yη, xξ, yξ, we get:

∂ds
j

∂τ
= us

j − ds
jJ(xξyητ + xξτyη − xηyξτ − xητyξ) + Jds

j

�
yηxτξ − yξxτη − xηyτξ + xξyτη

�

                                                                                                                                         .....(2.43)

or:

∂ds
j

∂τ
= us

j
.....(2.44)

This means that the definition of the structural velocity follows simply from the definition of the temporal 

derivative of the displacement. 

Equation (2.38) then becomes:

∂Q̂
s

∂τ
−

∂V̂
s
ξ

∂ξ
−

∂V̂
s
η

∂η
− Ĥ = 0

.....(2.45)

where:
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Q̂ =
1
J

�
ρ

s
u

s
j

d
s
jJ

�
Ĥ =

1
J

�
−cu

s
j + f

s
j + b

s
j

u
s
jJ

�

.....(2.46)

and:

V̂ s
ξ =

�
V s

x ξx + V s
y ξy

�
/J

V̂ s
η =

�
V s

x ηx + V s
y ηy

�
/J

.....(2.47)

where V
s
x  and 

V s
y  are as defined earlier. 

2.2 Integral Form of the Structural Equations

We can equivalently express the structural system in integral form. Once again, we show only the physi-

cal time-derivative. We start by expressing the integral form of the equations for a moving control volume 

in Arbitrary Eulerian Lagrangian (ALE) form:

�

V

∂Q
s

∂t
dV +

�

S
E

s
i dS =

�

S
V

s
i dS +

�

V
H

s
dV

.....(2.48)

Using the differential identity:

∂

∂t

�

V
QsdV =

�

V

∂Qs

∂t
dV +

�

S
Qsus

i dS
.....(2.49)

One can interpret the above identity in physical terms, i.e., the rate of change of the integrated value of Q 

within the control volume is the sum of the integral of the rate of change of Q within the CV and the net 

rate of flux of Q into the control volume. 

Substituting:

∂

∂t

�

V
Q

s
dV +

�

S
(Es

i −Q
s
u

s
i )dS =

�

S
V

s
i dS +

�

V
H

s
dV

.....(2.50)

This is equivalent to the classic ALE formulation. 

We can then write:

∂

∂t

�

V
Q

s
dV +

�

S
E

s
i

�
dSi =

�

S
V

s
i dSi +

�

V
H

s
dV

......(2.51)

where:
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Qs =
�

ρ
s
u

s
j

d
s
j/V

�
E

�
s,i =

�
0
0

�
Vs,i =

�
τ

s
ij

0

�
Hs =

�
f

s
j + b

s
j + cu

s
j

u
j
s/V

�

                                                                                                                                                                                 

.......(2.52)

Here, 
us

j  is the structural velocity and 
ds

j  is the structural displacement. The first equation is self explana-

tory. The second equation is written to match the correct definition of the structural velocity in terms of the 

displacement. To cast this in a proper control volume formulation, we have expressed the terms on a per 

unit volume basis. Note also that this form is consistent with the generalized coordinate version of the 

differential form given in Eqn. (2.46). 

As before, the structural stresses are given by Hooke's Law for an isotropic homogeneous material: 

τ s
ij =

Es

2(1 + νs)

�∂ds
i

∂xj
+

∂ds
j

∂xi

�
+ δij

Esνs

(1 + νs)(1− 2νs)
∇ · �ds

.......(2.53)

And, E  is the modulus of elasticity and ν is Poisson's ratio.

2.3 Numerical Characteristics of the 1D Structural System

The numerical character of the fluid dynamics equations are well-known: for instance, the inviscid equa-

tions represent a hyperbolic system governed by the particle and acoustic speeds that act as agents for 

the propagation of error through the system. In comparison, the characteristics of the structural equations 

are less well understood. In this section, we perform some fundamental analytical analysis to determine 

the structural characteristics. Simple stability analysis is also performed to understand the numerical im-

plications as well. 

In 1D, the differential form of the structural dynamics equations can be written as the following coupled 

set:

∂ρsus

∂t
=

∂

∂x
E� ∂ds

∂x
− cus + F(t) + b

.....(2.54)

∂ds

∂t
= us

.....(2.55)

where c  is the damping constant, F  is the external forcing function and b is a body force term. 

E� =
E(1− ν)

(1 + ν)(1− 2ν) .....(2.56)

and E  is the Young's modulus and ν  is Poisson's ratio. 

We can equivalently express the above equations in a more compact and general vector form:
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Γ
∂Qp

∂t
=

∂

∂x
R

∂Qp

∂x
+ H

.....(2.57)

where 

Γ =
�

ρs 0
0 1

�
Qp =

�
us

ds

�
R =

�
0 E

�

0 0

�
H =

�
−cus + F(t) + b

us

�

.....(2.58)

Note that the above form of the equations is similar to the fluid dynamic conservation laws, except that 

there is no explicit convective flux. This does not necessarily mean that the numerical properties of these 

equations are identical to the CFD case. Indeed, in the following, we perform some fundamental analyti-

cal studies to determine the specific physical and numerical behavior of the equations. 

Physical Characteristics: Dispersion Analysis

The physical behavior of the above equation system can be determined by carrying out a dispersion or 

wave analysis. To do this, we explicitly consider the linear constant coefficient form of the equations:

Γ̄
∂Qp

∂t
= R̄

∂2Qp

∂x2
+ D̄Qp

.....(2.59)

where 

D =
�
−c 0
1 0

�

.....(2.60)

We look for solutions of the form:

Qp = Q̂pe
iωte−ikx

.....(2.61)

Substituting the solution into the linearized equations, we get:

�
Γ(iω)−R(−ik)2 −D

�
Q̂pe

iωte−ikx = 0
.....(2.62)

For the above linear system to have a non-trivial solution, the LHS matrix operator must have zero deter-

minant:

det
�
Γ(iω) + R(k)2 −D

�
= 0

.....(2.63)

or:

����
ρs(iω) + c E�k2

−1 iω

���� = 0
.....(2.64)

or:
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−ρsω
2 + icω + E�k2 = 0.....(2.65)

or

ω

k

2
− ic

ρs

ω

k
− E�

ρs
= 0

.....(2.66)

or:

ω

k
=

1
2

�
i

c

ρs
±

�� c

ρs

�2
+ 4

E�

ρs

�

.....(2.67)

Note that in the absence of the damping term, i.e., when c = 0 , we have:

ω

k
= ±

�
E�

ρs .....(2.68)

Interestingly, in the absence of damping, the structural equations are purely hyperbolic (real wave 

speeds). These speeds are typically referred to as "sound-speeds" in the material. For representative val-

ues of E  and ρs , the sound-speed turns out be of the order of 5000 m/s.  

In the presence of the damping term, the wave speeds become complex with a positive imaginary com-

ponent, which corresponds to damping in time (of course). Moreover, it is noteworthy that the damping 

coefficient modifies the real part of the wave speed as well, i.e., it increases the speed of sound. 

As a next step, we determine the stability characteristics of numerical discretization schemes for solving 

the 1D structural equations. This is necessary because the system of equations is very different form 

what we are used to in the fluid dynamics world. 

Euler-Explicit/Central Difference Scheme:

For the stability analysis, we employ the linearized constant-coefficient equations given in Eqn. (2.59). We 

start with a central difference, Euler-explicit scheme:

Γ
Qn+1

i −Qn
i

∆t
= R

Qn
i−1 − 2Qn

i + Qn
i+1

∆x2
+ DQn

i
.....(2.69)

Using Fourier Series, we can write:

Qi =
�

Q̂n(t)eiknx
.....(2.70)

Now, for a linear problem, each mode will independently satisfy the equations of motion and so we can 

consider each mode independently, i.e., 
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Qi = Qn(t)eiknx
.....(2.71)

Qi+1 = Q̂n(t)eikn(x+∆x) = Qie
ik∆x

.....(2.72)

Qi−1 = Q̂n(t)eikn(x−∆x) = Qie
−ik∆x

.....(2.73)

Substituting into Eqn. (2.69), we get:

Γ
Qn+1

i −Qn
i

∆t
= −2(1− Cx)

∆x2
RQn

i + DQn
i

.....(2.74)

where Cx = cos kn∆x. 

Noting the "error" in the solution will also satisfy the same governing equations, we can equivalently iden-

tify the "Q" in the above equation with the error. We can then define an amplification matrix as follows:

Qn+1
i = GQn

i .....(2.75)

and the magnitude of the eigenvalues of G determine whether the errors in the solution decay or grow. 

Since the physical equations indicate constant amplitude waves (in the absence of the damping constant) 

and/or decay (in the presence of the damping term), we will interpret any growth of the errors as arising 

from numerical instability. 

Substituting Eqn. (2.75) into Eqn. (2.74), we get:

Γ
G− I

∆t
= −2(1− Cx)

∆x2
R + D

.....(2.76)

or:

Γ
∆t

G =
Γ
∆t
− 2(1− Cx)

∆x2
R + D

.....(2.77)

which is of the form:

K1 G = K2.....(2.78)

with:

K1 =
Γ
∆t

K2 =
Γ
∆t
− 2(1− Cx)

∆x2
R + D

.....(2.79)

Then:

G = K−1
1 K2 = I − 2(1− Cx)∆t

∆x2
Γ−1R + ∆tΓ−1D

.....(2.80)
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Substituting for the terms, we get:

G =

�
1− c∆t

ρs
−E�

ρs

2(1−Cx)∆t
∆x2

∆t 1

�

.....(2.81)

For simplicity, let us look at the case without damping. The eigenvalues of G are:

(1− λ)2 +
E�

ρs

2(1− Cx)∆t2

∆x2
= 0

.....(2.82)

or

λ = 1± i

�
E�

ρs

2(1− Cx)∆t2

∆x2
.....(3.83)

or

λ = 1± i
as∆t

∆x

�
2(1− Cx)

.....(2.84)

where as  is the speed of sound and as∆t/∆x = σ, the CFL number. 

Then:

λ = 1± iσ
�

2(1− Cx).....(2.85)

or:

λλ∗ = 1 + 2σ2(1− Cx).....(2.86)

which is always greater than unity. This means that the scheme is unconditionally unstable for all wave 

modes (i.e., all values of Cx  from -1 to 1). 

One can further examine the system with the damping term, although this is a futile exercise for the ex-

plicit scheme since it is already unconditionally unstable. At any rate, it is typically easier to determine the 

amplification factors computationally by substituting reasonable values for the solid properties and nu-

merically evaluating the eigenvalues. 

Euler-Implicit/Central Difference Scheme:

We next examine the central differenced, Euler-implicit scheme:

Γ
Qn+1

i −Qn
i

∆t
= R

Qn+1
i−1 − 2Qn+1

i + Qn+1
i+1

∆x2
+ DQn+1

i
.....(2.87)
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The details of the Fourier analysis are the same. The stability equation is again given by:

K1 G = K2.....(2.88)

where:

K1 =
Γ
∆t

+
2(1− Cx)

∆x2
R−D K2 =

Γ
∆t .....(2.89)

It is again possible to evaluate the amplification matrix in closed form. For simplicity, it is easier to deter-

mine the inverse of the amplification matrix and then require that the eigenvalues of the inverse matrix be 

greater than unity for stability. 

G−1 = K−1
2 K1 = I +

2(1− Cx)∆t

∆x2
Γ−1R−∆tΓ−1D

.....(2.90)

or:

G−1 =

�
1 + c∆t

ρs

E�

ρs

2(1−Cx)∆t
∆x2

−∆t 1

�

.....(2.91)

Again, dropping the damping term, the eigenvalues of G−1
 are:

λ = 1± iσ
�

2(1− Cx).....(2.92)

or:

λλ∗ = 1 + 2σ2(1− Cx).....(2.93)

which is always greater than unity. This means that the scheme is unconditionally stable for all wave 

modes (i.e., note that for values of Cx  from -1 to 1, the factor (1− Cx) > 0). 

It is also interesting to see if the central differenced implicit scheme provides any damping at high wave-

numbers. This is an indicator of the presence of inherent artificial dissipation in the scheme. To do this, we 

look at the π wave mode or when Cx = −1: 

λλ∗(π) = 1 + 4σ2
.....(2.94)

which indicates strong damping of the high wave numbers. Thus, the central differenced scheme pos-

sesses inherent damping properties and no additional damping is required for computational purposes 

(although they may be needed for physical reasons). 

2.4 Numerical Characteristics of the 2D Structural System

The 2D structural equations in differential form are:
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∂ρsus

∂t
=

∂

∂x

��
E� +

E�ν

1− 2ν

�
∂ds

x

∂x
+

E�ν

1− 2ν

∂ds
y

∂y

�
+

∂

∂y

�
E�

2
∂ds

x

∂y
+

E�

2
∂ds

y

∂x

�

! ! ! ! ! ! ! ! ! ! ! ! ! ! ......(2.95)

∂ρsvs

∂t
=

∂

∂x

�
E�

2
∂ds

x

∂y
+

E�

2
∂ds

y

∂x

�
+

∂

∂y

�
E�ν

1− 2ν

∂ds
x

∂x
+

�
E� +

E�ν

1− 2ν

�
∂ds

y

∂y

�

! ! ! ! ! ! ! ! ! ! ! ! ! ! ......(2.96)

∂ds
x

∂t
= us

......(2.97)

∂ds
y

∂t
= vs

......(2.98)

where we have defined E
� = Es/(1+ν) for convenience.

Stress Form of Equations of Motion

Let us examine the stress form of the structural system in two-dimensions:

∂ρsus

∂t
− ∂

∂x
σs

xx −
∂

∂y
σs

yx = 0
.....(2.99)

∂ρsvs

∂t
− ∂

∂x
σs

xy −
∂

∂y
σs

yy = 0
.....(2.100)

∂σs
xx

∂t
−

�
E

1 + ν
+

Eν

(1 + ν)(1− 2ν)

�
∂us

∂x
− Eν

(1 + ν)(1− 2ν)
∂vs

∂y
= 0

......(2.101)

∂σs
xy

∂t
− E

2(1 + ν)

�
∂us

∂y
+

∂vs

∂x

�
= 0

......(2.102)

∂σs
yy

∂t
− Eν

(1 + ν)(1− 2ν)
∂us

∂x
−

�
E

1 + ν
+

Eν

(1 + ν)(1− 2ν)

�
∂vs

∂y
= 0

......(2.103)

We note that, again, the source and sink terms have been dropped for convenience. 

We can equivalently write this in the following coupled vector form:
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∂Qq

∂t
+ Ãq

∂Qq

∂x
+ B̃q

∂Qq

∂y
= 0

......(2.104)

where:

Qq =





us

vs

σs
xx

σs
xy

σs
yy




Ãq =





0 0 − 1
ρs

0 0
0 0 0 − 1

ρs
0

−E � 1−ν
1−2ν 0 0 0 0

0 −E �

2 0 0 0
−E � ν

1−2ν 0 0 0 0




B̃q =





0 0 0 − 1
ρs

0
0 0 0 0 − 1

ρs

0 −E � ν
1−2ν 0 0 0

−E �

2 0 0 0 0
0 −E � 1−ν

1−2ν 0 0 0





......(2.105)

where E
� = E/(1+ν). 

We can confirm that the eigenvalues of the above system are:

λ(Ãq) = 0 , ±

�
E

2(1 + ν)ρs
, ±

�
E(1− ν)

(1 + ν)(1− 2ν)ρs
......(2.106)

or, alternately, 

λ(Ãq) = 0 , ±

�
E�

2ρs
, ±

�
E�(1− ν)
(1− 2ν)ρs

......(2.107)

These represent the two kinds of "seismic" waves: the so-called p waves and s waves, with the p waves 

traveling 2 times faster than the n waves. 

Now, for the general 2D case, when the cell faces are not aligned with the coordinate directions, we need 

to determine the eigenvalues of the general Jacobian matrix of the following form:

Âq = Ãk1 + B̃k2 =





0 0 −k1
ρs

−k2
ρs

0
0 0 0 −k1

ρs
−k2

ρs

−E�k1
1−ν
1−2ν −E�k2

ν
1−2ν 0 0 0

−E�k2
2 −E�k1

2 0 0 0
−E�k1

ν
1−2ν −E�k2

1−ν
1−2ν 0 0 0





! ! ! ! ! ! ! ! ! ! ! ! ! ! .......(2.108)

The eigenvalues of the above matrix can be determined to be:

λ(Âq) = 0 , ±

�
E�

2ρs
(k2

1 + k2
2), ±

�
E�(1− ν)
(1− 2ν)ρs

(k2
1 + k2

2)
.....(2.109)
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It is interesting to note that structural waves are like acoustic waves, they travel omni-directionally  (unlike 

particle waves, which travel in the direction of particle motion). 

2.5 Artificial Diffusion Schemes

To gain further insight into the structural system, we examine the stress form of the equations in 1D:

∂ρsus

∂t
− ∂

∂x
σs = 0

.....(2.110)

1
E

∂σs

∂t
− ∂us

∂x
= 0

.....(2.111)

where σs is the solid stress and is related to the strain through the Young's modulus: σs = E�s, and:

�s =
∂ds

∂x .....(2.112)

We note that Eqns. (2.110) and (2.111) follow directly from Eqns. (2.54) and (2.55), except that the source 

and sink terms have been dropped for convenience. 

We can equivalently write this in the following coupled vector form:

∂Qq

∂t
+ Ãq

∂Qq

∂x
= 0

.....(2.113)

where:

Qq =
�

us

σs

�
Ãq =

�
0 − 1

ρs

−E 0

�

.....(2.114)

We can readily confirm that the eigenvalues of the above system are:

λ(Ãq) = ±

�
E

ρs .....(2.115)

Of course, this indicates that the above first-order system is indeed hyperbolic. 

The matrix of left eigenvectors:

M−1 =

� 1
ρs

1
ρs

−
�

E
ρs

�
E
ρs

�

.....(2.116)

and its inverse:
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M =




ρs
2

1
2
√

E/ρs
ρs
2

1
2
√

E/ρs





.....(2.117)

Central-differencing of Eqn. (2.113) will contain no damping terms since all the truncation errors related to 

a first-order spatial derivative are purely dispersive. Thus, it is necessary to add appropriate artificial dis-

sipation terms. A conventional approach is to express the numerical discretization using an upwind formu-

lation. The first-order upwind scheme can be written as:

∂Qq

∂t
+ Ãq

∂Qq

∂x
=

∆x

2
∂

∂x
|Aq|∂Qq

∂x .....(2.118)

where 

|A| = M |Λ|M−1
.....(2.119)

and:

|Λ| =





�
E
ρs

0

0
�

E
ρs





.....(2.120)

Since |Λ| is of the form |λ±|I , we note that: |A| = |Λ|. 

In other words:

∂Qq

∂t
+ Ãq

∂Qq

∂x
=

∆x

2
∂

∂x
|Λ|∂Qq

∂x .....(2.121)

In scalar form, the equations of motion with the additional artificial dissipation terms:

∂ρsus

∂t
− ∂

∂x
σs =

∆x

2
∂

∂x
ρs

�
E

ρs

∂us

∂x
.....(2.122)

∂σs

∂t
− E

∂us

∂x
=

∆x

2
∂

∂x
E

�
E

ρs

∂σs

∂x
.....(2.123)

Note that it is implied that the spatial derivatives are central-differenced and the combined form yields the 

first-order upwind form for the coupled hyperbolic system. 
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1D Formulation with Added Dissipation Terms

Equations (2.122) and (2.123) can now be transformed back to the Qp = (us, ds)T
 variable system. 

∂ρsus

∂t
=

∂

∂x
E

∂ds

∂x
+

∆x

2
∂

∂x
ρs

�
E

ρs

∂us

∂x
.....(2.124)

∂ds

∂t
= us +

∆x

2
∂

∂x

�
E

ρs

∂ds

∂x
.....(2.125)

Or, 

Γp
∂Qp

∂t
=

∂

∂x
R

∂Qp

∂x
+ H +

∆x

2
∂

∂x
Γp|Λ|∂Qp

∂x .....(2.126)

where 

|Λ| =





�
E
ρs

0

0
�

E
ρs





.....(2.127)

The last term in Eqn. (2.126) is the equivalent artificial dissipation which formally reduces the system to a 

first-order upwind scheme. The main advantage of such a formulation would lie in the preservation of 

monotonicity in the presence of strong gradients in the structural solution. We reiterate that the additional 

terms are not required for smoothing of odd-even decoupling; they are potentially needed only for mono-

tonicity preservation or for maintaining diagonal dominance for linear solution purposes.  

2D Artificial Dissipation Formulation

As noted in the one-dimensional development, one may derive artificial dissipation formulations for the 

above hyperbolic system of equations. When you use the second-order form of the structural equations, 

the addition of dissipation is not necessary to maintain solution smoothness because the second-order 

difference operators of the second-derivative terms naturally contain artificial dissipation terms. In con-

trast, the central-differencing of the first-order operators do not contain artificial dissipation naturally and 

such terms need to be explicitly or implicitly added. Upwind discretizations are an example of the latter. 

In our work, we are employing the second-order form of the equations and, therefore, additional artificial 

dissipation terms are not required. However, as explained in the one-dimensional case, the governing 

equations are not diagonally dominant, which stymies the application of certain iterative solution tech-

niques such as Gauss-Seidel. Therefore, we introduce second-order dissipation terms on the LHS opera-

tor alone. Such a formulation is considered later. Here, we merely present a suggested form of the artifi-

cial dissipation operator to help introduce diagonal dominance and maintain stability. 

A simple form of artificial dissipation model comes from the spectral radius-based formulation of Jameson 

and Pulliam:
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E�
s,i+1/2 =

Ei + Ei+1

2
− ∆x

2
|σ(Â)|(Qi+1 −Qi)

......(2.128)

where the above expression refers to the interfacial definition of the flux term in Eqn. (2.48) and σ(Â)  is 

the spectral radius of the generalized system Jacobian. This is of the following form, but will be updated 

with the correct maximum eigenvalue:

σ(Â) =

�
2E(1− ν)

(1 + ν)(1− 2ν)ρs
(k2

1 + k2
2)

......(2.129)

Note that the above formulation is used only on the LHS of the implicit operator in order to provide diago-

nal dominance for the iterative linear solver. The flux scheme is not used on the RHS and has no influ-

ence on the accuracy of the solution itself. It is also worth pointing out that the physical inviscid flux vector 

is a null vector for the structural equations; however, the dissipation part of the flux-vector is non-zero, 

which is of course necessary to provide the diagonal dominance. Finally, we note that other more sophis-

ticated formulations of the matrix dissipation term are possible, but are probably unnecessary given the 

somewhat limited goals of achieving diagonal dominance. 
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3.0 Unified Solution Methodology

Fundamental development of any coupled system of equations requires that the system be treated within 

a single unified framework. Such an approach ensures that all potential interactions and coupling be-

tween the constituent equations are automatically reflected in the computational procedures. It is impor-

tant to note that this is true even if the coupled systems are eventually solved in a partitioned manner in 

the final solution algorithm (for instance, due to parallel domain decomposition). Accordingly, we start by 

expressing the governing equations in a common vector form and by describing a unified finite-volume 

discretization of these equations. We pay special attention to the structural dynamics equation because 

the finite-volume form of these equations is relatively novel and their numerical characteristics are not 

well-established in the literature. We then discuss the details of the unified algorithm including the fully 

implicit time-integration, linearization and solution schemes, as well as issues related to the Geometric 

Conservation Law, preconditioning and fluid-structural interface conditions.

3.1 Equations of Motion

Fundamental development of any coupled system of equations requires that the system be treated within 

a single unified framework. Such an approach ensures that all potential interactions and coupling be-

tween the constituent equations are automatically reflected in the computational procedures, even if the 

coupled systems are eventually solved in a partitioned manner in the final solution algorithm (for instance, 

due to parallel domain decomposition). 

Accordingly, we express the governing equations in a common vector form and in a unified finite-volume 

framework:

∂

∂t

�

V
Q̃dV +

�

S
Ẽ

�
idSi =

�

S
ṼidSi +

�

V
H̃dV

.......(3.1)

where Ẽ
�
i = Ẽi−u f

i Q̃  represents the inviscid flux, Ṽi  is the viscous flux, H̃  is the source term and u
f
i  

is the mesh velocity. Note that the "tildes" connote the entire pde system:
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Q̃ =





ρ

ρuj

e

ρ
f
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j + cu
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j /V
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τ�
i j = µ

�∂ui

∂x j
+

∂u j

∂xi

�
+δi jλ∇ ·�u

τ s
ij =

Es

2(1 + νs)

�∂ds
i

∂xj
+

∂ds
j

∂xi

�
+ δij

Esν

(1 + νs)(1− 2νs)
∇ · �ds

τf
ij =

Ef

2(1 + νf )

�∂df
i

∂xj
+

∂df
j

∂xi

�
+ δij

Efν

(1 + νf )(1− 2νf )
∇ · �df

                                                                                                                                          ......(3.2)

In the above system, the first three equations are the fluid dynamic equations in the ALE form, the next 

two equations represent the mesh equations represented by a pseudo-structure and the last two equa-

tions are the actual solid mechanics equations. Note that the second equation in each structural system is 

simply a compatibility relation that defines the mesh velocity as the time-derivative of the displacement. 

Note that these terms are written in a per cell-volume basis to be consistent with the finite-volume integral 

formulation. 

The above system is not actually solved at all points in the computational domain; rather, the fluids and 

mesh motion equations are solved in the fluids domain and the structural equations are solved in the solid 

region. For purposes of this demarcation, we equivalently write the above coupled system as:

Q̃ =




Q
Qf

Qs





.....(3.3)

where Q = (ρ,ρu j,e)T
  represent the fluids equations, 

Qf = (ρ f u f
j ,d

f
j )

T
 represents the mesh 

system and 
Qs = (ρsus

j,d
s
j)

T
 represents the structural system on the other. Note that we have parti-

tioned the equations differently than we did in the past; particularly, the mesh equations are expressed as 
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a separate partition of equations; the reason for this difference will be apparent later. We note that the first 

two systems are active in the fluid "zone", while the third system is active only in the structural "zone". 

The two physical zones are coupled to each other at the interface and the unified framework considered 

here would treat this coupling in a naturally conservative and implicit fashion. 

We note that it useful sometimes to think of the three sets of equations as individual conservation laws, 

i.e.

∂

∂t

�

V
QdV +

�

S
E

�
idSi =

�

S
VidSi +

�

V
HdV

∂

∂t

�

V
QfdV +

�

S
E

�
f,idSi =

�

S
Vf,idSi +

�

V
HfdV

∂

∂t

�

V
QsdV +

�

S
E

�
s,idSi =

�

S
Vs,idSi +

�

V
HsdV

.....(3.4)

We further note that the iterative solution of the above system of equations would potentially converge to 

exactly the same solution as the tightly-coupled form in Eqn. (3.2) provided the boundary force and dis-

placement information is exchanged during the solution process. 

3.2 Time-Derivative Preconditioning

The solution of the equations in (3.4) would converge to exactly the same solution as the coupled form in 

Eqn. (3.1). For definiteness, we will refer to such an uncoupled formulation as the non-linear-level parti-

tioned approach. Alternately, it is possible to retain the fully coupled system until the linear solver stage 

and then iteratively solve the constituent linear equation counter-parts. This scheme is  developed later 

and will be referred to as the linear-level-partitioned approach. 

A further remark that can be made with respect to the partitioned equation system in Eqn. (3.4) is that the 

three sets of equations can be solved iteratively in sequential fashion. In earlier formulations, we parti-

tioned the fluid-structural system into a fluid-mesh system and a structural system. However, we note that 

the fluid dynamics equations depend upon the mesh equations through the mesh velocity terms in the 

inviscid fluxes, but the mesh equations do not explicitly depend upon the fluid equations. This fact sug-

gests that it would be more economical to consider the three-way partitioning given in Eqn. (3.4) or its 

linear counterpart that will be discussed later. Specifically, one may consider the following sequence of 

solutions at each physical time-step: first, the structural solution (Qs ), using the latest fluid dynamic 

forces. This is then followed by the mesh solution using the structural displacement (Qf ) as the bound-

ary condition. Finally, we can perform the fluid-dynamic solution (Q ) using the mesh velocity (and dis-

placement) from the structural solution. Then, the cycle is repeated until convergence is obtained for that 

particular time-step. In fact, the actual solution scheme will follow this solution pattern. 

Time-Scaling of the Equations

Before we proceed further, we will look further at the physical scaling of the above equations. One of the 

issues that arises with the equation set in (3.1) or, equivalently, in (3.4) is that the same physical time-

scale is being used in all of the equations. This is, of course, exactly what we want for the physical equa-
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tions, but the fluid-mesh equations are not physical and to limit the mesh motion to the physical time-

scales of motion is an unnecessary constraint. Specifically, it may be preferable to allow the fluid-mesh to 

relax completely to a pseudo-steady state at every time-step in response to the actual motion of the struc-

ture. This would potentially insure better behaved fluid grids during the course of the computations. 

It is easy to manipulate the equations to introduce a time-scaling of the mesh equations. For instance:

∂
∂t

Z

V

QdV +
Z

S

E
�
i
dSi =

Z

S

VidSi +
Z

V

HdV

1
ϒ f

∂
∂t

Z

V

Qf dV +
Z

S

E
�
f ,idSi =

Z

S

Vf ,idSi +
Z

V

Hf dV

∂
∂t

Z

V

QsdV +
Z

S

E
�
s,idSi =

Z

S

Vs,idSi +
Z

V

HsdV

.....(3.5)

Note that the time-derivative of the second equation is scaled by ϒ f . When this is a large number, the 

equivalent time-step used for the fluid-mesh equation is much greater than the physical fluids and struc-

tural equations. In other words, by appropriately defining this parameter, one can essentially use an infi-

nite time-step for the pseudo-structural mesh equations, or equivalently, solve these equations to their 

"steady-state". We should also note that this is the same as dropping the physical time-derivative in the 

mesh equations altogether. 

The coupled system in Eqn. (3.1) can also be written to express this "physical" time-scaling in the follow-

ing manner:

Γ̃ ∂
∂t

Z

V

Q̃dV +
Z

S

Ẽ
�
i
dSi =

Z

S

ṼidSi +
Z

V

H̃dV

....(3.6)

where the time-scaling matrix Gamma has the following form:

Γ̃ =





1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1

ϒ f 0 0 0
0 0 0 0 1

ϒ f 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





Once again the term ϒ f  has the same definition as given earlier and its inclusion allows the pseudo-

structural equations to advance to a steady-state for each physical time-step of the fluids and structural 

equations. 

So, Eqn. (3.5) or equivalently Eqn. (3.6) will be the system of equations we will employ in our analysis. In 

the next section, we consider time-accurate or unsteady flows and formulate the sub-iterative solution 

process using a dual-time scheme. Following this, we discuss the interface treatment for the above sets 
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of equations and the discretization procedure to ensure that discrete-GCL is preserved. In the final sec-

tion, we develop the linear-level partition method mentioned earlier. 

Dual-Time Iterative Formulation 

The above system of equations has many potential sources of stiffness: between the particle speeds and 

acoustic speeds, viscous time scales, inherent unsteady fluid time scales, imposed external frequencies 

(such as from the rotor rotation) and the structural time scales. In order to counter these stiffnesses and to 

construct a well-conditioned computational procedure, it is necessary to employ a preconditioned pseudo-

time-stepping scheme. The preconditioning scaling introduces artificial time-scales which preserves 

proper conditioning of the system characteristics under a wide range of physical conditions and scales, 

thereby providing a means of controlling both accuracy and efficiency of the computational scheme. 

To emphasize that the preconditioning scaling is introduced only in the iterative level, we express the fully 

coupled equations in the so-called dual-time version:

Γ̃p

∂
∂τ

Z

V

Q̃pdV + Γ̃ ∂
∂t

Z

V

Q̃dV +
Z

S

Ẽ
�
i
dSi =

Z

S

ṼidSi +
Z

V

H̃dV

.....(3.7)

where the preconditioning matrix, Γp , is defined with respect to a vector of primitive variables, Qp ,  for 

simplicity:

Γ̃p =





ρ�
p 0 ρT 0 0 0 0

u jρ�
p ρδi j u jρT 0 0 0 0

h0ρ�
p− (1−ρhp) ρui hoρT +ρhT 0 0 0 0

0 0 0 ρ f

ε f 0 0 0
0 0 0 0 1

ε f 0 0
0 0 0 0 0 ρs

εs 0
0 0 0 0 0 0 1

εs





Q̃p =





p
u j
T
u f

j

d f
j

us
j

ds
j





.....(3.8)

where ρp, ρT , hp, hT  represent partial derivatives of the thermodynamic properties and 

Here, 
ρ�

p  represents the traditional pseudo-time scaling of the fluids equations for low Mach number and 

different physical time scales:

ρ�
p =

1
V 2

p
− ρT (1−ρhp)

ρhT
=

1

min
�
max

�
V 2,V 2Str2,V 2/Re2

�
,c2

� − ρT (1−ρhp)
ρhT

.....

(3.9)

where V 2 = ukuk . In other words, the scaling is controlled by the local Mach number, Reynolds number 

and Strouhal number (for unsteady problems). 
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The other artificial scalings εs
 and ε f

 represent appropriate pseudo-time scalings for the structural and 

mesh motion equations. The definitions of these terms depend on the controlling physics of these equa-

tions and are given as:

The above derivations clarify the correct choice of the fluid-structure pseudo-time scalings in the choice of 

the preconditioning matrix. Given that the fluid dynamics eigenvalues are given by λ f , the two structural 

scalings can be written as: 

ε f =
λ f�

E �
f /ρ f

εs =
λ f�
E �

s/ρs
.....(3.9)

The pseudo-time step is selected according to the fluid eigenvalue. Thus:

 

∆τ =
CFL ∆x j

λ f .....(3.10)

We note that the above scalings ensure that the structural equations operate at the optimal time-step 

choice based on the relevant characteristic speeds.  

 

The preconditioned dual-time system can also be written in the partitioned form given in Eqn. 3.5:
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�
s,idSi =

�

S
Vs,idSi +

�

V
HsdV

.....(3.11)

where Γp  refers to the top 3 x 3 section of the fully coupled matrix in Eqn. (3.8) and the remaining terms 

have their usual meanings. 

We use the coupled and partitioned forms of the equations interchangeably because, while the two forms 

are identical, each has specific advantages for certain situations. For example in the following section, we 

will discuss the formulation of the discrete scheme using the partitioned form because the inviscid flux 

terms and GCL issues are present only in the fluid dynamics equations. 

3.3 Fluid-Structure Interface Treatment

We next consider the interface implementation for fluid-structures problems, which is critical because it is 

at the interface that all the coupling between the fluids and structural equations occurs. The overall guide-
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lines for the interface formulation include: (1) clear exposition of the boundary equations, (2) water-tight 

conservation, (3) unified formulation for both node- and cell-centered schemes, (4) ability to do both ex-

plicit and implicit interface solution, and, in addition, (5) exact flux-transfer of momentum fluxes (i.e., 

forces and displacements between the fluid and structure). 

For both cell-centered and node-centered formulations, we first locate a set of interface points, which 

stores the unknown at the interface. The list of unknowns at these interface points:

Fluids:  
ρ, u j, T, u f

j , d f
j

Structures:  
us

j, ds
j

where the subscripts "s" and "f" refer to the structures and fluid structural mesh equations and I have 

used primitive variables for simplicity, although any complete set of dependent variables can be used. 

The above represents a total of seven unknowns in 1D, 12 unknowns in 2D or 17 unknowns in 3D, which 

means that we require seven (1D), 12 (2D) or 17 (3D) equations to specify them. To obtain the necessary 

interface equations or conditions, we consider the conservation laws applied to an infinitesimal control 

volume around the interface. 

Fluid

Structure

Zero Mass Flux
No Slip
Fixed Temperature
Mom Flux Equal

Mom Flux Equal

Figure 1: Schematic of fluids and structures meshes 

showing the details of the fluid-structure interface condi-

tions.

1. Mass Conservation:

un = uf
n.....(3.12)

2. Momentum Conservation:

p+ τ�
nn = τs

nn

τ�
nt = τs

nt .....(3.13)
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3. Adiabatic wall:

∂T
∂n

= 0
.....(3.14)

4. Compatibility Conditions:

ds
j = d f

j

us
j = u f

j

u f
j =

∂d f
j

∂t

us
j =

∂ds
j

∂t .....(3.15)

 

The above represents seven, 12 or 17 equations, which can in turn be written in compact form as follows:

Ω(Qin) = 0 .....(3.16)

where Ω  is a vector of length seven (or 12 or 17) and contains the above conditions and Qin  are the 

interface Q variables. The interface Q variables are used to define the interface fluxes on the fluid and 

structural sides and are therefore coupled with the conservation laws on each side. 

Cell-Centered Formulation

For simplicity, we tackle the cell-centered case first and limit ourselves to the 1D situation for clarity:

32



Cell centers

FS-Interface

Boundary Point

FLUID STRUCTURE

Cell Faces

Figure 3.2. Schematic showing cell-centered grid structure and interface locations where the 

boundary (i.e., interface) variables are stored. 

We position a point on the interface on both the fluids-side and the structures-side. These points are natu-

rally coincident, but need to be defined on both the fluids and structural sides because they are used to 

store the respective unknowns for the two systems. Moreover, these terms are defined so as to satisfy the 

appropriate interface conditions and are subsequently utilized for calculating the boundary (or interface) 

fluxes for the fluids and structures calculations. 

Node-Centered Formulation

We now have two "half-control-volumes": one on the fluid side and one on the structures side. The "cell-

centers" of these control volumes lie on the interface. In addition, we have two interface points, one for 

the fluids-side and one for the structures-side, which are utilized to store the interface values of the de-

pendent variables and to calculate the interface fluxes. Note that, in the node-centered case, the grid lo-

cations of the cell-averaged values for the boundary half-cells are coincident with the grid locations for the 

interface vales. Nevertheless, separate storage locations are maintained in order to properly enforce the 

boundary conditions and, at the same time, ensure water-tight flux conservation in the fluid and structural 

cells. 
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Cell centers

FS-Interface

Boundary Point

FLUID STRUCTURE

Cell Faces

Figure 3.3. Schematic showing node-centered grid structure and interface locations where the 

boundary (i.e., interface) variables are stored. 

3.4 Discrete Formulation and Geometric Conservation Law

The important element of the discretization of Eqn. (3.7) or (3.11) is the inviscid flux formulation. We note 

that the inviscid terms are non-zero only in the fluid-dynamic equations and, therefore, we consider only 

this subset for the purposes of the present discussion. Common flux formulations of hyperbolic systems 

involve the addition of artificial dissipation terms similar to the discussions given previously. The flux for-

mulation can take a number of different forms. A scalar dissipation model would yield:

�E �
k+1/2 =

�E �L + �E �R

2
− ∆x

2
Γp|σ(Γ−1

p A�
p)|(Qp,R−Qp,L)

.....(3.17)

where 
A�

p  is the Jacobian of the entire inviscid flux E �
, i.e., 

A�
p = ∂E �/∂Qp . 

On the other hand, a matrix dissipation model would take the form:

�E �
k+1/2 =

�E �L + �E �R

2
− ∆x

2
Γp|Γ−1

p A�
p|(Qp,R−Qp,L)

.....(3.18)

We further note that the definition of the inviscid flux E �
 contains the interface grid velocity term, which 

can be derived from the above interfacial flux expressions. We next consider the GCL aspects of the 

above formulation(s).  
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The discrete geometric conservation law states that a constant flow, Q = C, satisfies the discrete  equa-

tions exactly. Now, for the coupled fluid dynamic and mesh motion equations, it is easy to see that this is 

readily satisfied because the grid velocity and grid displacements are constant as well. This may be why it 

is commonly understood that GCL is automatically insured for coupled fluid and fluid-mesh solution 

schemes. 

However, we can go a step further and require that GCL be satisfied for uniform fluid dynamics and non-

uniform mesh motion. In other words, we consider the case when �u f �= C . Essentially, this introduces a 

new constraint on how certain cell-geometry related terms must be computed. We further note that we 

can disregard the mesh motion or structural equations from further consideration since these equations 

are not impacted by the requirement that the fluid dynamics is constant. 

By substituting into the equations of motion for constant flow, we get:

Q
∂
∂t

Z

V
dV −Q

Z

S
�u f · n̂dS = 0

.....(3.19)

which, if we are using II-order BDF, reduces to:

3
2

V n+1−2V n +
1
2

V n−1 = ∆t(un+1
f ,k+1/2−un+1

f ,k−1/2) .....(3.20)

where the right hand side terms are the grid velocities at the faces of the cell, which are obtained from the 

standard inviscid flux formulation for the system and, in general, includes the artificial dissipation terms. 

GCL: Method I

In general, there are two methods for implementing GCL. The obvious approach for the unified coupled 

formulation is to use Eqn. (3.20) to update the cell volume at the new time-level. In other words, solution 

of the coupled equation system at each time-step yields the values of the grid displacements, 
d f ,  at the 

cell centers at the new time-level. Knowing the grid displacements, the cell-center grid velocities can be 

determined and the interfacial velocities can in turn be determined from the flux formulation given in Eqn. 

(3.17) and then used in Eqn. (3.20) to determine the new volume V n+1
. This procedure to determine 

the new cell volume will automatically insure that GCL is satisfied. 

It is important to note that the above flux procedure (for a constant flow) results in the following simple 

averaging formula for the interfacial mesh velocities:

un+1
f ,k+1/2 =

1
2
(u f ,k +u f ,k+1)

.....(3.21)

Thus, the update equation becomes:

3
2

V n+1 = 2V n− 1
2

V n−1 +
∆t
2

�
(u f ,k +u f ,k+1)n+1− (u f ,k +u f ,k−1)n+1

�

.....(3.22)
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which will clearly satisfy the GCL condition. 

For further elucidation, we also note that Eqn. (24) is equivalently:

3
2

V n+1 = 2V n− 1
2

V n−1 +
∆t
2

��∂d
∂t

���
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+
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���
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�∂d
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���
f ,k
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∂d
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���
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�n+1
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! ! ! ! ! ! ! ! ! ! ! ! ! ! .....(3.23)

or, 

3
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V n+1 = 2V n− 1
2

V n−1 +∆t

�
∂d
∂t

���
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− ∂d
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���
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.....(3.24)

or, 

3
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V n+1−2V n +
1
2

V n−1 =

��3
2

dn+1−2dn +
1
2

dn−1
����

f ,k+1/2
−

�3
2

dn+1−2dn +
1
2

dn−1
����

f ,k−1/2

�

! ! ! ! ! ! ! ! ! ! ! ! ! ! .....(3.25)

or, we can write:

∆V = d f ,k+1/2−d f ,k−1/2 .....(3.26)

which simply states that the cell volume change is given by the difference in the displacements of the 

right- and left-cell boundaries, which is a physically accurate description of the cell volume. Thus, the GCL 

condition leads to a natural and precise definition of the cell volume. 

GCL Method II

An alternate approach to GCL can be equivalently defined by not requiring that the interfacial mesh veloc-

ity be specified by the overall flux formulation. We note that this is, in principle, counter to the unified solu-

tion strategy for the fluids, mesh and structural equations. However, conventional fluid-structure treat-

ments do not utilize a fully coupled solution procedure and the mesh may simply be updated by algebraic 

means. It is therefore instructive to see what the traditional GCL constraint leads to. 

The procedure starts with the specification of the cell volume. Again, we are concerned mainly with the 

change in the volume due to displacement of the cell faces. Thus:

∆V = V −V0 = d f ,k+1/2−d f ,k−1/2 ....(3.27)

where V0  is the cell volume for the original undeformed fluid mesh. 
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The interfacial mesh displacements can be simply written as the average across the face:

d f ,k+1/2 =
1
2
(d f ,k +d f ,k+1)

.....(3.28)

Using the latest available values of the interfacial mesh displacements, the cell volume can be calculated.

The interfacial mesh velocities are then computed using the following relationship:

un+1
f ,k+1/2 =

∂d f

∂t

���
k+1/2

=
1
∆t

�3
2

dn+1−2dn +
1
2

dn−1
����

k+1/2 .....(3.29)

It is straightforward to show that the cell volume from Eqn. (3.27) and the mesh velocity obtained from 

Eqn. (3.29) together ensure that GCL is satisfied (Eqn. (3.20)). In fact, the substitution of Eqn. (3.27) to 

the LHS of Eqn. (3.21) and the substitution of Eqn. (3.29) to the RHS of Eqn. (3.21) lead to cancellation of 

all the terms, thereby proving that GCL is preserved identically. 

In conclusion, we note that the two methods are closely related, but distinct. In the first, the mesh velocity 

solution at the nodes is averaged at the faces and the interfacial mesh displacements are calculated to be 

consistent with the interfacial mesh velocities. In the second, it is the mesh displacement at the nodes 

that are averaged at the cell faces and the interfacial displacements are used to define the interfacial 

mesh velocities. In both cases, discrete GCL is insured because the change in cell volume is calculated 

according the volumes swept by each cell face. 

3.5 Coupled Solution Procedure

Implicit coupled solutions are necessary to provide unconditional stability of the computational procedure. 

However, fully implicit solutions are difficult to obtain at all levels of the solution procedure for a variety of 

reasons, which will be discussed later. In order to carefully analyze implicit solutions and to formulate a 

methodical approach for solving large systems of coupled equations, we clearly delineate the numerical 

solution procedure into three stages: physical time-stepping, non-linear iterations and linear solver itera-

tions. In each case, we introduce distinct time-stepping procedures to facilitate the iterative process as 

well as to provide a natural means of under-relaxation for ensuring robustness.  

The simplest scheme is the so-called non-linear partitioned scheme which is written directly by invoking 

Eqn. (3.11) and solving the equations in sequential fashion. Because of the dependencies, it is best to 

carry out the structural solution first, followed by the mesh solution and, finally, the fluid-dynamic solution. 

The entire sequence is repeated within the non-linear sub-iteration process until the equations are con-

verged for the particular physical time-step. Once converged, the equations are advanced to the next 

physical time-step and the iterative procedure is repeated. 

The linear-partitioned scheme, on the other hand, starts with the coupled vector system in Eqn. (3.7) in 

discrete form:
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Γ̃p

∂Q̃pV

∂τ
= −Γ̃

�3Q̃
n+1−4Q̃

n + Q̃
n−1

∆t
V

n+1 + ∑
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(Ẽ �
i
Si)n+1− ∑
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(ṼiSi)n+1− (H̃V )n+1
�

= −R̃
n+1

! ! ! ! ! ! ! ! ! ! ! ! ! ! ........(3.30)

where R̃  represents the residual of the physical unsteady system at each time-step. Note that all the flux 

terms are evaluated at the new time level, signifying that the physical system is being treated in a fully 

implicit fashion. Consequently, there are no formal restrictions on the stability of the physical time-

marching process, other than the restrictions imposed by the accurate representation of the physical tran-

sients. 

We next linearize the equations and, recognizing that an iterative solution is necessary to eliminate the 

linearization errors, we introduce the pseudo-time-stepping scheme to orchestrate the iterations:

�Γ̃pV
∆τl

+
� ∂R̃
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where l  is the counter for the non-linear iterations and the subscript l  signifies the corresponding pseudo-

time-stepping scheme. 

Each non-linear iteration involves the solution of a large multi-dimensional matrix operator, which in turn 

requires an iterative solution. For generality, we cast this “inner” iteration procedure as an independent  

pseudo-time-stepping scheme:
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where k  is the counter for the linear iterations and the subscript k  signifies the correspond pseudo time-

step. The prime on the Jacobian on the LHS indicates that some approximate Jacobian (such as the first-

order version) may be employed to suit the properties of the linear solver.  

The final step concerns the solution of the coupled linear system, which is rewritten below in terms of the 

fluid and structural sub-systems:
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Solution of the above system requires the solution of a full matrix system involving seven equations (in 

1D) and 17 equations (in 3D). Fortunately, because of the iterative nature of the linear solution procedure 

and the inevitable need for domain decomposition in parallel computing environments, we can segregate 

the linear solution matrix in the following manner:
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This means that the fluid, mesh and structural linear solutions can be carried out independent of each 

other (in parallel, if so desired). The coupling occurs through the RHS residual of the linear-sub-iterations 

and, importantly, full coupling is retained at the non-linear and physical time-stepping levels. This property 

has the important advantage of insuring that any time-step limitations ensuing from the solver partitioning 

only influences the selection of ∆τk  and not ∆τl  or the physical time-step, ∆t .  

3.6 Comparison to Staggered Solution Schemes

In this section, we compare the coupled solution schemes with segregated solution schemes. Represen-

tative classes of the segregated schemes have also been implemented in this study in order to carry out 

comparisons between them and the proposed coupled approach. 

The following block-diagram, Fig 3.4, represents the coupled method. Starting with the fluid, structures 

and mesh solutions at time-level n, we iterate, either linearly or non-linearly, between the three sets of 

partitioned equation systems until convergence is attained. At this point, we advance the solution to the 

new time level, n+1. 
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Figure 3.4 Block diagram showing coupled solution approach. 

In the next block diagram shown in Fig. 3.5, the conventional serial staggered (CSS) scheme is shown. In 

this case, the three sets of equations are solved serially without any iterations between them. Thus, start-

ing with the fluid dynamic solution at time-level n, we first solve the structures equations, followed by the 

fluid mesh equations, before finally solving the fluid dynamic equations to get the solution at time-level 
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n+1. The lack of an iterative procedure implies that the final solution will not be the same as in the cou-

pled scheme, although for small enough time-steps, the solution will eventually converge to the correct 

solution. More importantly, because the interface solutions are "lagged", there will likely be stability issues 

that would need to be controlled by selecting small enough time-step sizes. 
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Figure 3.5 Block diagram showing conventional serial staggered scheme (CSS). 

In the final block diagram, Fig. 3.6, we show the Generalized Serial Staggered (GSS) scheme. In this ap-

proach, structures and fluid/mesh solutions are separated by a half-time-step. In other words, the struc-

tures equations are solved at time levels, n and n+1, while the fluid and mesh equations are solved at 

time-levels n+1/2 and n+3/2 and so on. The overall scheme proceeds as follows. Initially, the structures 

equations are solved for time-level n providing surface deformations to the fluids and mesh equations. 

The fluid and mesh equations are then integrated to the n+1/2 time-level. Using the fluid dynamic forces 

from the n+1/2 time-level, we then obtain the structural solution for time-level n+1 and the cycle then re-

peats. 
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Figure 3.6 Block diagram showing the generalized serial staggered scheme (GSS). 

Note that the GSS scheme is similar to the CSS scheme with the main difference being in the staggered-

time approach. This latter distinction ensures second-order accuracy without requiring an sub-iterations. 
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4.0 Computational Infrastructure

4.1 Python Infrastructure

In the previous section, the three-way partitioned solution system was described. The computational do-

main is partitioned into two physical zones: the fluid and the structural zones. Further, each physical zone 

can typically be further partitioned, i.e., the fluids zone is partitioned into the fluid solver and the pseudo-

structural solver for the mesh equations. 

As discussed in the previous section, the physical partitioning and domain decomposition can be carried 

out either at the non-linear level or at the linear solution stage, with appropriate data exchange taking 

place at the end of each linear or k-level iteration. Full implicitness at the interface is obtained through the 

use of sub-iterations similar to traditional domain decomposition methods in standard CFD codes. 

We have developed a modular CFD approach to provide a general implementation framework that is suit-

able for the fluid dynamics and structural equation systems. This framework is composed of a control 

layer and three functional layers of code (see Fig. 4.1). The control layer is simply the interface layer that 

provides the subroutine calls and data structures needed for each solver partition. Underlying the control 

layer is the first functional layer, the time-integration layer, which is responsible for the solution of the 

equations in each domain and the transfer of fluxes and grid motions at the fluid-structure interface. The 

second layer comprises of the spatial finite-volume discrete formulation for arbitrary numbers of partial 

differential equations and the solution of general linear systems. Finally, the third layer consists of flux 

definitions for each system of equations. The codes themselves are written in Fortran-90 with dynamic 

memory allocation and use pointers to avoid data replication between the layers or between the different 

solver partitions.  

Fluids

Python Infrastructure

Time-Stepping

Spatial 
Discretization

StructuresMesh

Figure 4.1 Schematic showing modular code structure used in the unified fluid-structure code develop-

ment. 
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The solvers are coupled together using a light-weight Python-based infrastructure. The Python scripts 

control the data transfers between the solvers and the execution sequence of the algorithm. A section of 

the main Python script is shown in Fig. 4.2. The temporal solution of the fluid and structural systems in-

volves three distinct instances of the solver, one for the fluids solution, one for the mesh solution and one 

for the structural solution. This solution process is orchestrated by the python code, which is tailored to 

the current application and, therefore, does not introduce any additional memory or CPU overheads. Fur-

ther, the solution procedure also requires the periodic transfer of fluxes and mesh motions and/or linear-

ized Jacobian matrices between the fluid and structural components of the problem and this data transfer 

is also achieved through the Python framework. Finally, the modular Python framework is also general-

izeable for parallelization, although these aspects have not yet been developed. 

for i in range(1,nsteps+1):

! for j in range(1,niter+1):

! ! #

! ! # run inner iterations

! ! #

! ! mesh1d.runsubstep(i,j)

! ! fluid1d.runsubstep(i,j)

! ! struct1d.runsubstep(i,j)

! ! #

! ! # get data to be exchanged

! ! #

! ! structData=struct1d.getboundarydata(structDataSize)

! ! meshData=mesh1d.getmeshdata(meshDataSize1,meshDataSize2)

! ! fluidData=fluid1d.getboundarydata(fluidDataSize)

! ! #

! ! # set data to be exchanged

! ! #

! ! struct1d.setboundarydata(fluidData)

! ! mesh1d.setboundarydata(structData)

! ! fluid1d.setmeshdata(meshData)

! !

! fluid1d.update(i)

! struct1d.update(i)

! mesh1d.update(i)

It can be further seen that the three solvers: fluids, mesh and structures, share the same code for the 

time-stepping and spatial discretization layers and differ only in the system layer. In fact this is the major 

advantage of utilizing the modular-CFD infrastructure and there is little or no code replication of all the 

standard time integration and finite volume operations. Moreover, the code infrastructure is also be easy 

to maintain, upgrade and extend. For instance, changes in the fundamental flux formulation naturally ex-

tend to both fluid and structural systems. Further, the infrastructure allows ease of extension from one 

dimensions to two dimensions, again with the advantage of utilizing much of the same code and code 

structure, which greatly minimizes the time for development as well as debugging effort.
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5.0 Results

Results of the individual components for fluids and structure solution as well as the fully coupled fluid-

structures-mesh solution are presented in this section. The results shown are for the one-dimensional 

instance and concern a 1D beam or flow in a shock-tube. For the coupled fluid-structure case, we con-

sider flow in a shock-tube with an elastic beam forming one end-wall of the shock-tube. High pressure 

waves in the shock-tube cause the beam to compress and the shock-tube itself to expand. In addition to 

fundamental performance of the methods, we carry out several parametric studies, focusing on discrete-

GCL effects, grid resolution, temporal accuracy, boundary condition robustness as well as a comparison 

of performance of the coupled method with the conventional and generalized segregated solution proce-

dures. 

 

5.1 Structures Code Performance

The stand-alone 1D structures code has been verified for both steady and unsteady operation on a flexi-

ble beam. Two different boundary condition options are of interest. For the physical structure, we are typi-

cally interested in the case where force is applied on one end of the beam. In the steady-case instance, 

the beam compresses in response to the force. On the other hand, for the non-physical structural solution 

that is used for fluid-mesh motion, the boundary condition of interest is fixed displacement, i.e., the dis-

placement of one fluid boundary in response to a moving or deforming solid surface. Results using both 

boundary conditions are given here. 

Force Boundary Condition

Figure 5.1 shows the scenario for a forced boundary beam. The beam is fixed at the right-end, while at 

the left-end, a force of a specified magnitude is applied. In a coupled scenario, this forced boundary 

would be exposed to the aerodynamic field and the force would be derived from  the fluid pressure. 

F

Beam

Fixed EndForced End

Figure 5.1 Schematic showing a 1D beam with boundary forcing on the left-end. 

Convergence for a range of forcing magnitudes is shown in Fig. 5.2. For these steady cases, the plot 

shows the L2 norm of the residual a a function of the iteration number. Three difference forcings are 

shown ranging from a non-dimensionalized magnitude of 1.e-4 to 1.e-2 and 1.0. Convergence rates are 

approximately the same for all three cases, although the higher forces which lead to larger displacements 

seem to "saturate" at a higher residual level. This is probably due to less number of accurate digits that 

are preserved by the finite-precision of the computer for the higher displacement results. These results 

are for a CFL = 100 and show that the convergence rates (i.e., the slopes of the semi-log lines) are very 

nearly the same for the different forcings. In all cases, machine zero convergence is attained in about 100 

iterations. 
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Figure 5.2 Convergence rates for different forcings of a 1D flexible beam using the stand-alone structures 

code.  

Corresponding results for the beam displacement along the axial length of the beam are shown in Fig. 

5.3. These results show that for the most strongly forced case, F/E = 1, the displacement at the left-end of 

the beam is about 1 m which, for a total beam length of 10 m, represents 10% of the total beam length. 

These results thus demonstrate that the fully implicit structural solver is robust and efficient even for heav-

ily loaded beams. 

Figure 5.3 Beam displacements for different forcings of a 1D flexible beam using the stand-alone struc-

tures code.  
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Displacement Boundary Condition

As mentioned earlier, the force boundary condition is useful for physical structures, but for the mesh mo-

tion problem, the relevant boundary condition would be a specified displacement. Specifically, the dis-

placement would arise from the motion or deformation of a physical surface and the fluid-dynamic mesh 

would need to deform to adjust to the new location of the boundary. Figure 5.4 shows the schematic of 

the fixed displacement boundary condition scenario. 

Fig. 5.4 Schematic of the fixed displacement boundary condition specification at teh left-end of the beam. 

Convergence of the displacement boundary case for a CFL=100 (Fig. 5.5a) shows similar convergence 

rates to the previous forced boundary case. Note that the boundary displacement used in this case was 1 

m for a 10-m long beam and so the case involved considerable beam deformation. Results are also 

shown for a lower CFL number of 10 (Fig. 5.5b) and the convergence is observed to be somewhat slower, 

which is to be expected. Interestingly, further decreases in the CFL number resulted in non-convergence, 

which seems counter to expectation. 

Fig. 5.4 Convergence results for fixed-displacement boundary condition. 

The reason for the loss of stability for lower CFL numbers becomes evident when the interim solutions are 

carefully examined. For large boundary displacements, the internal grid points of the beam need to re-

spond quickly to the compression (or expansion) of the beam. For small CFL numbers, the internal dis-

placements tend to be very slow and may therefore lead to non-physical beam/mesh topologies. 

To avoid this problem, it is therefore necessary to introduce a boundary condition relaxation which insures 

that the boundary displacement is no more than a fraction of the first cell-size:
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The last equation ensures that the boundary displacement is under-relaxed by an amount that limits the 

amount of displacement that can be applied to a fraction of the size of the first cell, ∆xib. 

The value of the fraction "K" is typically selected to be 0.1. 

Convergence results with the boundary relaxation are shown in Fig. 5.5. The results for CL=10 are com-

parable to the earlier result when boundary relaxation was not used. The results for CFL=1 are now ob-

served to be convergent, whereas this case proved unstable when the relaxation scheme was not in-

voked. We observe that the convergence result is quite slow, but this is expected given the relatively 

small value of the CFL number. 

Fig. 5.5 Convergence results for fixed-displacement boundary condition using boundary under-relaxation. 
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5.2 Fluid Dynamics Code Performance

Shock-Tube Problem

The stand-alone fluid dynamics code has also been verified for steady and unsteady test cases for a vari-

ety of boundary conditions, including inflow, outflow, wall, etc. Here, we show representative unsteady 

results for a 1D shock-tube with the diaphragm at the center of the duct and walls on both ends (see Fig. 

5.6). 

 

Fig. 5.6 Schematic of the shock-tube set-up used for fluid-dynamics code testing. 

Figure 5.7 shows sample convergence results showing the residual drop in the sub-iterations (or pseudo-

time-steps) for several consecutive physical time-steps. In this case, 10 sub-iterations were employed for 

each physical time-step and we note that about 5 orders of residual drop are obtained, indicating good 

performance of the dual-time algorithm. 

Figure 5.7 Convergence rates for the sub-iterations of the unsteady fluid dynamics code for a 1D shock-

tube problem. 
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Figure 5.8 shows pressure variation along the shock-tube for several time-steps. We can observe the 

rarefaction wave moving leftward into the high pressure gas, while a shock and contact discontinuity pro-

ceed rightward into the low pressure gas. eventually, when the shock wave hits the right-wall of the shock 

tube, it is reflected and then travels leftward back towards the center of the shock tube. These results ver-

ify that the fluid dynamics code provides the right results for the shock tube computation. 

Figure 5.8 Pressure solutions at different time-steps of the unsteady fluid dynamics code for the 1D 

shock-tube problem. 

Grid resolution studies and comparison versus the exact solution for a 1D shock-tube is provided in Fig. 

5.9. Both pressure and velocity contours are shown at an instant in time prior to the shock-wave reaching 

the end-wall of the shock-tube. It is clear that the results agree very well with the exact solution and that 

increasing the number of grid points brings the agreement even closer. Note that the physical time-step 

size was also lowered for finer grids. The pseudo-CFL was maintained at 100 for all the calculations. 

Figure 5.9 Pressure and velocity solutions at a given instant in time compared with the exact solution for a 

1D shock-tube. 
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Additional tests of ducted flows with different boundary condition specifications have also been carried out 

to verify that the code performs well for different cases and conditions. These are not presented here be-

cause they do not add anything new to the discussions. 

5.3 Fluid-Mesh Code Performance

Fluid-Mesh Convergence

Verification of the performance of the fluid and mesh motion code are provided next. Only steady results 

are shown here for a flow through a straight duct with an initial perturbation of the solution. Figure 5.10a 

shows the convergence rates for different CFLs with the initial perturbation applied only to the fluid solu-

tion. As a result, the mesh motion solution is static and there is no variation in the grid locations. In con-

trast, in Fig. 5.10b, both the fluid and mesh solutions are perturbed and, therefore, all equations vary 

throughout the flowfield and need to converge to the correct solution. The two convergence plots demon-

strate that the fluids-mesh convergence rates are comparable to the fluid-only convergence rates for low 

CFL numbers, but slightly slower for the highest CFL number shown. Nevertheless, these results confirm 

that the fluid-mesh motion code is performing adequately and is robust and efficient. 

Figure 5.10 Convergence rates for steady fluid dynamics (left) and fluid dynamics + mesh (right) calcula-

tion in 1D duct.

As a second test of the fluid and mesh solutions, we consider the shock-tube problem again but impose a 

sinusoidal grid motion in the problem:

df (x, t) = 1
2 sin(ωtt) sin(ωxdf (x, t))

......(5.4)

where the frequencies were chosen so that there would be no cell-penetration during the simulation, 

ωt = π/2, ωx = π/5.   
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Verification of Temporal Accuracy

The grid motion should not affect the shock-tube solution if the methodology is implemented correctly. 

Importantly, this test case also allows us to verify the two GCL schemes outlined in the previous section. 

Figures 5.11a and 5.11b show the error in the shock-tube solution (obtained by comparing the exact solu-

tion) as a function of the time-step size for the two GCL schemes. It is clear from the slope of the error 

that both GCL schemes demonstrate second-order temporal accuracy. Formal proof of the second order 

temporal accuracy of Method II is given in the Appendix. 

1.93

1.0

Figure 5.11a Temporal order of accuracy for shock-tube problem with moving fluid mesh. GCL Method I is 

used in these studies. 

1.93

1.0

Figure 5.11b Temporal order of accuracy for shock-tube problem with moving fluid mesh.  GCL method II 

is used in these studies. 
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While both schemes show second-order accuracy, we note that Method II is easier to implement for the 

partitioned systems used here. Specifically, Method I uses the flux formulation to define the interfacial 

mesh velocities and then the GCl constraint is used to define the cell volume. This means that the cell 

volume will not be precisely the same as the geometric volume of the cell. On the other hand, in Method 

II, the cell volume is calculated using the facial displacements and the interfacial velocities are given by 

applying consistent temporal discretizations to the interfacial displacements. The latter is more commonly 

applied in finite volume methods and is the recommended choice here as well. 

5.4 Coupled CFD-CSD Code Performance

We next turn our attention to the fully coupled fluid-structure code. Here, we consider a 1D shock-tube 

with a flexible end-wall (see Fig. 5.12). In addition to the fluid dynamics solution in the tube, we also solve 

for the structural deformation of the end-wall, which is taken to be a flexible beam.

 

Fig. 5.12 Schematic of the shock-tube set-up with a flexible beam at the left-end. This set-up is used for 

the coupled fluids-structures testing. 

Coupled Solution Verification

In Fig 5.13, the plot on the right shows pressure solutions in the shock-tube, which are qualitatively similar 

to the results shown earlier. In this case, however, when the shock hits the right-wall, the pressure rise 

causes the beam structure to compress as the wave traverses the beam. These results are shown on the 

right side. It can be observed that as the pressure rises on the right wall, the beam displacement in-

creases. At the highest point shown, the pressure is about 10 atm, which is twenty times compared to the 

initial pressure (on the right side) of 1 atm. The corresponding beam displacement is observed to be 

about 25 mm. Importantly, the sub-iteration convergence (not shown) is virtually identical to the fluids-only 

case given earlier, which confirms the overall robustness and efficiency of the unified solution scheme. 
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Figure 5.13 1D Shock tube calculation using coupled fluid-structures code with a flexible wall on one end. 

To further verify the performance of the coupled fluid-structures code, we next perform a grid resolution 

study. Since there is no exact solution to this problem, we cannot formally verify order of accuracy, but we 

can check if the solution is grid converged. Figure 5.14 shows the results in the shock-tube with flexible 

end at a given instant in time using three different meshes and physical time-step sizes. It is clear that the 

pressure field on the fluids-side is approaching a consistent converged solution as a function of the grid 

resolution. On the structures side, the solution convergence is even close with the medium and fine re-

sults giving solutions that are nearly the same. 

Figure 5.14 Grid resolution studies for 1D Shock tube calculation using coupled fluid-structures code with 

a flexible wall on one end. 
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Comparison of Coupled and Segregated Schemes

As a final set of comparisons, we consider the shock-tube case with the flexible end-wall and apply the 

conventional serial staggered (CSS) and generalized serial staggered (GSS) schemes in addition to the 

coupled scheme given earlier. This will allow us to compare the accuracy and performance of the different 

approaches to the solution of the fluid-mesh-structures problem. Figure 5.15 shows the fluid dynamic part 

of the solution for all three schemes and the results are observed to be indistinguishable from each other. 

This indicates that the three schemes are consistent in their formulation and converge to the same solu-

tion (at least to within plottable accuracy). 

Figure 5.15 Comparison of Coupled, CSS and GSS solutions for the 1D Shock tube calculation with a 

flexible wall on one end. 

Figures 5.16 show temporal resolution results for all three schemes: coupled, CSS and GSS. Since there 

is no exact solution for these cases, a very fine grid solution was used in lieu of an exact solution in order 

to calculate the error. All plots show similar error behavior and the schemes are observed to be approxi-

mately second-order accurate in time. The slightly lower than second-order slope is probably attributable 

to the approximate nature of the reference "exact" solution. 
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Figure 5.16a Temporal order of accuracy of the coupled scheme for the 1D Shock tube calculation with a 

flexible wall on one end. 

1.89

1.0

Figure 5.16b Temporal order of accuracy of the CSS scheme for the 1D Shock tube calculation with a 

flexible wall on one end. 
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Figure 5.16c Temporal order of accuracy of the GSS scheme for the 1D Shock tube calculation with a 

flexible wall on one end. 

Comparisons of the robustness of the three cases were also carried out by systematically running  for 

increasingly larger physical time-step sizes. Interestingly, all schemes performed equally well in the ro-

bustness study as well. All schemes converged for time-steps less than or equal to 1.e-4s and diverged 

when larger time-steps were used. Based on these studies, it appears that the schemes share similar 

performance and accuracy for the one-dimensional test problems studied here. 
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6.0 Summary and Conclusions

The present work has concerned the development of a unified solution approach for coupled fluid-

structure problems. The approach is based on using a common finite-volume framework for the fluid dy-

namics, mesh motion and structural dynamics equations. The finite-volume framework facilitates the im-

plementation of fully conservative fluid-structure interface conditions and the coupled solution framework 

enables implicit non-linear solutions of the combined equations. In all three sets of equations are solved: 

the fluid-dynamics equations for the fluid flow, the structural dynamics equations in the flexible solid me-

dium and a second set of structural equations that governs the motion of the fluid-dynamic mesh in re-

sponse to the deforming solid surface. The three sets of equations are cast within a partitioned solution 

framework which are then solved sequentially using sub-iterations at each physical time-step. The algo-

rithm is implemented within a modular finite-volume infrastructure that uses the same time-integration and 

discretization sub-routines for both the fluids and structures equations. A set of Python scripts are used to 

wrap the interface subroutines in each solver and control the sequence of execution of the solvers. 

The main conclusions of the present study may be separated into three areas: numerical analysis of the 

structural dynamics equations, formulation of the unified algorithm, and numerical testing results. We pre-

sent these in order in the following. 

6.1 Numerical Analysis of the Structural Dynamics Equations 

The structural dynamics equations are not conventionally written in integral form. To elucidate matters, the 

present research work considers the formulation of the structural system in both differential and integral 

forms. The equations themselves consist of the conservation of momentum in the solid and a set of com-

patibility relations that express the structural velocities as the temporal derivative of the solid-phase dis-

placements. Fundamental dispersion analyses are used to determine the numerical characteristics of the 

structural equations. It is shown that they represent a set of hyperbolic equations and the eigenvalues 

correspond to the so-called p-waves and s-waves, also referred to as seismic waves. This means that the 

structural system shares many of the numerical properties of the fluid dynamics system, which greatly 

simplifies the construction of appropriate numerical algorithms. 

Stability analysis of the structural equations show that the system is unconditionally unstable when ex-

plicit algorithms are used, but they are unconditionally stable for implicit schemes. Moreover, it is interest-

ing that central differencing of the basic second-order conservation laws leads to adequate high-

frequency damping, which is different from the classical result for first-order hyperbolic systems (such as 

the fluids equations). Consequently, there is no need to add additional artificial dissipation terms to the 

formulation. Nevertheless, we argue that the structural system is not naturally diagonally dominant, which 

is a limitation when it comes to the use of implicit relaxation algorithms such as the Gauss-Seidel method. 

Therefore, we have developed a spectral-radius-based artificial dissipation methodology that can be util-

ized to provide diagonal dominance. In practice, these additional terms will be necessary only in the dis-

cretization of the implicit operator and are not required for the calculation of the explicit residual. Numeri-

cal studies validate these findings. 

6.2 Formulation of the Unified Algorithm 

The unified algorithmic formulation developed in this work has several important elements: 
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1. Solver partitioning: It is not necessary to solve all the equations as one large coupled matrix system 

since all the equations do not appear simultaneously in all sections of the flow. Thus, the fluid dynamics 

and mesh equations are used only in the fluid zone, while the structural dynamics equations are used 

only in the solid medium. It therefore makes sense to partition the solution methodology according to 

zones. Moreover, the fluids and mesh equations are not directly coupled together: the mesh equations 

depend upon the structural dynamics and the fluid equations depend upon the interfacial mesh velocities. 

Thus, it is convenient to partition the equation system into three solver modules: fluids, mesh and struc-

tures. Because of the data dependencies, the best order in which to solve the equations is: structures 

first, followed by the mesh equations and finally the fluids equations. The three solvers are cast within a 

sub-iterative framework so that interfacial data are exchanged within the sub-iterative process, thereby 

ensuring that all parts of the equation system are treated implicitly at the physical time-level. 

2. Time-scaling: Using the same physical time-step for all the solver modules means that the pseudo-

structural equations representing the fluid-dynamics-mesh will also be solved time-accurately. However, 

since the mesh equations are not physical, time-accuracy is not relevant. Moreover, the slow propagation 

of waves through the mesh would likely result in poorer quality intermediate meshes. The best approach, 

therefore, is to use an infinitely large time-step for the mesh equations so that at each physical time-step, 

the mesh equations are solved to convergence. This is achieved by introducing a time-scaling parameter 

to the physical time-derivative in the mesh equation that artificially scales the physical time-step to be very 

large. Note that this scaling is done to the physical time-derivatives of the pseudo-structural mesh equa-

tions only. 

3. Preconditioning: This refers to time-scaling of the pseudo-time-derivatives that is employed within the 

dual-time-framework to perform sub-iterations at each physical time-step. For steady-state computations, 

this formulation reduces to a single-time formulation that contains only the pseudo-time-derivatives (the 

physical time-derivatives are dropped). Preconditioning is used for the pseudo-time scaling to ensure that 

all the equations are advanced by the appropriate CFL number in the iteration process. The eigenvalues 

of the fluid system are the particle speeds and the acoustic speeds, while the eigenvalues of the struc-

tural equations are the seismic speeds. These speeds can be of very different magnitudes, hence leading 

to an additional source of stiffness. For the fully coupled system of equations, we have formulated a 

pseudo-time-scaling procedure that eliminates this stiffness from the pseudo-time system. For the 

partitioned-solver formulation that is used in this work, this scaling is not explicitly needed since it is 

straightforward to use the proper definition of the CFL number in each of the solvers, i.e., the CFL defini-

tion must be based on the eigenvalues of the relevant system eigenvalues in each solver. This is the ap-

proach followed here. 

4. Geometric Conservation Law or GCL: Proper formulation of the cell volumes and interfacial veloci-

ties is needed to ensure that the discrete system satisfies the GCL property. This means that the numeri-

cal solution is able to exactly preserve a constant flow situation (in the presence of moving meshes). Two 

different dGCL-preserving schemes have been formulated. the first method starts with the fully coupled 

fluid-mesh-structural system and formulates the interfacial velocities as an inherent part of the flux formu-

lation. The implication of doing this is that the cell volume must be computed in such a manner that the 

GCL property is maintained. The second method starts with the systems written as individual solver parti-

tions. In that case, the interfacial velocity is not an explicit part of the flux formulations. Then, the cell vol-

ume may be computed using the geometry of the cell, i.e., by adding or subtracting the volumes swept by 

each cell face. The interfacial velocities are then computed as the time derivative of the facial displace-

ments. To satisfy GCL, it is important that the same time discretization be used for the interfacial velocity 

calculation as is used for the physical time-derivatives in this equation. Both method shave been evalu-

ated in this study, but since our method employs solver-partitioning, the second method is the more natu-

ral one to use. We note that this choice is consistent with the typical implementation used within the finite-

volume community for moving mesh problems. 

5. Interface Formulation: The coupling between fluids and structures and the coupling between struc-

tures and mesh are both controlled by the formulation of the interface conditions between the fluids and 
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structures physical zones. We have carefully laid out all the conservation laws and compatibility relations 

that must be satisfied at the interface. Importantly, the fluid dynamics transfers the forces at the surface to 

the solid equations. And, the structural dynamics transfers the deformation of the surface to the fluid 

mesh equations. In this initial work, we have assumed that the fluids and structural meshes are conform-

ing, i.e., they have one-to-one point matching. As a result, the face areas of the two fluids and structural 

grid systems are precisely the same. We further note that the interface conditions are solved implicitly as 

boundary conditions within each solver partition and full implicitness at the physical time-level is ensured 

by the sub-iteration process. 

6.3 Numerical Testing Results 

A variety of important findings resulted from the numerical testing studies pursued in this work. These are 

summarized below: 

1. Mesh System Boundary Condition Relaxation: The pseudo-structural equations that are used to 

represent mesh motion employ the displacement of the solid boundary surface as the boundary condition. 

We found, however, that if the boundary displacement is large, the fluid dynamic mesh may become non-

physical (i.e., have cells with negative volumes). Our results show that this can happen particularly when 

the displacement is large and the physical time-step size (used in the mesh equations) is small. In order 

to counter this effect, we have formulated an under-relaxation procedure for the boundary displacement. 

This ensures that the specified boundary displacement is limited by the physical size of the first cell, 

thereby avoiding any non-physical cell volumes during the iterative process. 

2. Three-solver and two-solver partitioning: In our work, we initially formulated the coupled system 

with a two solver partitioning system that was based strictly on the two physical zones: i.e., fluids and 

structures. The fluids partition contained the combined solver for the fluids and mesh equations, while the 

structures solver contained only the physical structural dynamics solver. The issue with such a formulation 

was that the mesh equations are constrained to use the same physical time-step as the fluid dynamics 

equations. As noted earlier, this is unnecessary since the mesh equations are not physical and therefore 

work best with an infinitely large time-step size. A second observation in this regard is the fact that the 

mesh equations are not directly dependent on the fluids equations (of course, the fluids equations depend 

upon the mesh equations through the definition of the interfacial velocity). Because of this one-way cou-

pling, it is preferable to partition the coupled system into three parts: i.e., the fluids solver, the structures 

solver and the fluid-mesh solver. Our studies show that the three-solver approach works as well as the 

two-solver approach in terms of performance and accuracy for the same time-step specifications. The 

important advantage with the three-solver approach is that it has the flexibility of using an "infinite" physi-

cal time-step for the mesh equations. Our studies have further confirmed that this choice does not impact 

robustness of the overall numerical solution. 

3. Two different GCL methods: Our studies indicate that both GCL procedures outlined earlier are 

provably second-order accurate in time. However, method II is ideally suited to the three-solver partition-

ing approach used in this study and is therefore recommended for use. We note again that this choice is 

consistent with current practice in finite-volume moving-mesh codes. 

4. Coupled and segregated schemes: In addition to the coupled approach proposed here, we also for-

mulated and compared the performance of two popular segregated approaches: the so-called Conven-

tional Serial Staggered (CSS) scheme and the Generalized Serial Staggered Scheme (GSS). We point 

out that our modular approach enabled the testing of these alternate algorithms simply by reconfiguring 

only the main execution loop and no changes were required in the solver modules themselves. Interest-

ingly, our 1D tests shows that all three schemes were provably second-order accurate and equally robust 

59



in terms of stability as a function of the time-step size. While these results are a bit surprising (we would 

expect the CSS scheme to be less accurate and potentially less robust), we note that the current results 

are one-dimensional and the extension to multi-dimensions may reveal more significant differences be-

tween the approaches. 

6.4 Future Work 

The current work has established a coupled fluid-mesh-structures framework for multi-dimensional prob-

lems, but the current practical studies have relied on the one-dimensional formulation. Initial implementa-

tion of the methods for two-dimensional problems have been carried out, but the methods have not been 

fully tested in this mode as yet. Future work will focus on the extension of these studies in two-dimensions 

and (eventually) to more practical three-dimensional problems as well. Specific two-dimensional problems 

include airfoil flows, while three-dimensional studies will focus on rotorcraft problems. 

The present work also considered grid-point-matching between the fluid dynamics and structural dynam-

ics. This clearly simplifies the specification of fluxes between the two systems at the fluid-structure inter-

face. Future work will extend the formulation to allow arbitrary meshes in the fluids and structural do-

mains. In both cases, it is nevertheless important that the mesh systems utilize the same consistent defi-

nition of the surface. The extension to arbitrary meshes will be handled by a domain connectivity formula-

tion which will carry out appropriate area-weighted mappings of the fluid-dynamic cell faces into the struc-

tural cell faces on the surface. Such a component does not presently exist but would be an important 

component for future development. 

Extension of the current methodology for parallel processing is further area of future work. The general 

approach would be to introduce a mesh and domain-decomposition layer that handles the communication 

between different grid partitions for each solver. The solver modules themselves that have been devel-

oped as part of this work will remain unchanged and will be invoked by the meshing layer to perform the 

necessary solution on a mesh-block at a time. In this way, the current infrastructure can be used as the 

basis for more comprehensive future development without having to rewrite all aspects of the code. 
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Appendix

Proof of temporal order of accuracy of the discrete GCL approach considered here. See 
attached. 
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1 Appendix A: Proof in One Dimension

The following section contains the proof that Scheme 2 satisfies its DGCL and possess

second-order accuracy for prescribed motion.

1.0.1 Introduction

Let us define a few operators which will be used in the derivation. In the definitions,

dζ = ζ∆x, tτ = τ∆t where ζ, τ are dummy variables for the spatial and temporal indices

respectively. The operators are defined for ∀τ ≥ 0, ∀ζ ∈ [0, N ] where N is the total number

of grid points. We will use the notation that for some quantity f which is a function of

space and time

( f(x, t) )|t=tb
x=da

= f(da, t
b
) (1)

We can extend the above definition to functions of functions, say, for example if

B(f)
τ
ζ = f(dζ , t

τ
) + f(dζ+1, t

τ+1
) (2)

Then,

( B(f) )|t=tb
x=da

= B(f)
b
a = f(da, t

b
) + f(da+1, t

b+1
) (3)

Now, we are ready to introduce the operators which are defined below

δx( · )
τ
ζ =

( · )|t=tτ
x=dζ+1

+ ( · )|t=tτ
x=dζ

2
−

( · )|t=tτ
x=dζ

+ ( · )
t=tτ
x=dζ−1

2
(4)

δt( · )
τ
ζ =

3

2
( · )|t=tτ

x=dζ
− 2( · )|t=tτ−1

x=dζ
+

1

2
( · )|t=tτ−2

x=dζ
(5)

δ
1
t ( · )

τ
ζ = ( · )|t=tτ

x=dζ
− ( · )|t=tτ−1

x=dζ
(6)

We can use the above operators to define another operator shown below

δx,t( · )
τ
ζ = δx(δt( · ))

τ
ζ

=

δt( · )|t=tτ
x=dζ+1

+ δt( · )|t=tτ
x=dζ

2
−

δt( · )|t=tτ
x=dζ

+ δt( · )|t=tτ
x=dζ−1

2

=
δt( · )

τ
ζ+1 + δt( · )

τ
ζ

2
−

δt( · )
τ
ζ + δt( · )

τ
ζ−1

2
(7)

Similarly,

δt,x( · )
τ
ζ = δt(δx( · ))

τ
ζ

=
3

2
δx( · )|t=tτ

x=dζ
− 2δx( · )|t=tτ−1

x=dζ
+

1

2
δx( · )|t=tτ−2

x=dζ

=
3

2
δx( · )

τ
ζ − 2δx( · )

τ−1
ζ +

1

2
δx( · )

τ−2
ζ (8)

Because δx and δt are linear, we have that

δt,x( · )
τ
ζ = δx,t( · )

τ
ζ (9)
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In this method, the mesh velocity is defined as

u
n+1
i =

δt(d)
n+1
i

∆t
(10)

and the volume V �
of a cell is defined as follows

(V
�
i )

n+1
=

2

3

�
δx(u)

n+1
i ∆t + 2(V

�
i )

n − 1

2
(V

�
i )

n−1

�
(11)

which can be written more concisely using the above defined operators as

δt(V
�
)
n+1
i = δx(u)

n+1
i ∆t (12)

Putting this back into (12), we get

δt(V
�
)
n+1
i = δx

�
δt(d)

∆t

�n+1

i

∆t = δx,t(d)
n+1
i (13)

In the case of motion induced by a displacement of the structure that is part of the unknowns

of the coupled fluid-structure interaction problem, we have

u
P,n+1
i =

δt(d
P
)
n+1
i

∆t
(14)

where dP
are the predicted positions and uP

is the predicted mesh velocity. Here the volume

(V �,P
) would be defined as

δt(V
�,P

)
n+1
i = δx(u

P
)
n+1
i ∆t = δx,t(d

P
)
n+1
i (15)

Now, if we created a C0
-interpolant of the predicted displacements (dP

(t)) and plugged it

into the above equation, we would obtain

δt(V
�,P )

n+1
i = δx(uP )

n+1
i ∆t = δx,t(d

P
(t))

n+1
i (16)

We can also have the exact volume which is shown below

Vi(t
n+1

) = δx(d(t))
n+1
i (17)

We also have the predicted volume V P
and the interpolated predicted volume V P

(t), the

exact form of which depends on the form of the predictor. In order to simplify notation,

we shall drop the spatial index i though it should be understood that we are talking about

a given cell.

1.0.2 DGCL

This method uses the implicit 3-point BDF with a volume modification and can be written

as

δt(V
�,P

Q)
n+1

+ ∆tẼ(Q
n+1

, u
P,n+1

) = ∆tẼv (Q
n+1

, d
P,n+1

) (18)

where the quantity V �,P
is calculated from the following equation

δt(V
�,P

)
n+1

= δx(u
P
)
n+1

∆t (19)
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If we plug in a constant solution Q = Q†
, we get

δt(V
�,P

)
n+1

Q
†
+ ∆tẼ(Q

†
, u

P,n+1
) = ∆tẼv (Q

†
, d

P,n+1
) (20)

We can simplify the flux terms as follows

Ẽv (Q
†
, d

P,n+1
) = 0 (21)

Ẽ(Q
†
, u

P,n+1
) = −Q

†
F̃(u

P,n+1
) (22)

where

F̃(u
P,n+1

) = δx(u
P
)
n+1

(23)

Therefore, we get the DGCL for this scheme which is

δt(V
�,P

)
n+1 −∆tδx(u

P
)
n+1

= 0 (24)

Now we need to see if the scheme satisfies its DGCL. We can plug in (19) into the LHS of

the above equation to get

∆tδx(u
P
)
n+1 −∆tδx(u

P
)
n+1

= 0 (25)

Thus, this method satisfies its DGCL.

1.0.3 Accuracy of the scheme

Before we assess the accuracy of the scheme, let us assume that

∃ q ∈ R, q ≥ 1/∀t ∈ R, d
P
(t)− d(t) = O(∆t

q
) (26)

Now, when we plug the exact solution into the scheme we obtain the truncation error which

is shown below

Ψ = δt(V
�,P Q(t))

n+1
+ ∆tẼ(Q(t

n+1
), uP,n+1)−∆tẼv(Q(t

n+1
), d

P
(t

n+1
)) (27)

If we add and subtract δt(V
P
(t)Q(t))n+1

then we obtain

Ψ = δt(V
�,P Q(t))

n+1 − δt(V
P
(t)Q(t))

n+1
+ ∆tẼ(Q(t

n+1
), uP,n+1)−

∆tẼv(Q(t
n+1

), d
P
(t

n+1
)) + δt(V

P
(t)Q(t))n+1

(28)

Now, we will simplify the last term in the above equation. We can expand the interpolated

predicted volume about the exact volume to obtain

(V
P
(t)Q(t)) = (V (t)Q(t)) + O(||dP

(t)− d(t)||) (29)

Therefore, by linearity of δt, we have

δt(V
P
(t)Q(t))

n+1
= δt(V (t)Q(t))

n+1
+ δt(O(||dP

(t)− d(t)||))n+1
(30)

From a Taylor series expansion of the quantity (V P
i (t)Qi(t)), we obtain

δt(V (t)Q(t))
n+1

= ∆t
d

dt
(V (t)Q(t))(t

n+1
) + O(∆t

3
) (31)
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Also, we have that

δt(O(||dP
(t)− d(t)||))n+1

=
3

2
O(||dP

(t)− d(t)||)(tn+1
)− 2O(||dP

(t)− d(t)||)(tn)+

1

2
O(||dP

(t)− d(t)||)(tn−1
)

=
3

2
C1(t

n+1
,∆t(t

n+1
))||dP

(t
n+1

)− d(t
n+1

)||

− 2C1(t
n
,∆t(t

n
))||dP

(t
n
)− d(t

n
)|| +

1

2
C1(t

n−1
,∆t(t

n−1
))||dP

(t
n−1

) − d(t
n−1

)||

=

1�

k=−1

O(||dP
(t

n+k
)− d(t

n+k
)||) (32)

Therefore, we have that

δt(V
P
(t)Q(t))

n+1
= ∆t

d

dt
(V (t)Q(t))(t

n+1
) + ∆t

1�

k=−1

O(||dP
(t

n+k
)− d(t

n+k
)||) + O(∆t

3
)

(33)

Now, we know that from the ALE form of the equations

∆t
d

dt
(V (t)Q(t))(t

n+1
) = −∆tẼ(Q(t

n+1
), u(t

n+1
)) + ∆tẼv(Q(t

n+1
), d(t

n+1
)) (34)

Using this, we get that

δt(V
P
(t)Q(t))n+1

= −∆tẼ(Q(t
n+1

), u(t
n+1

)) + ∆tẼv(Q(t
n+1

), d(t
n+1

))+

∆t

1�

k=−1

O(||dP
(t

n+k
)− d(t

n+k
)||) + O(∆t

3
)

Plugging this back into the truncation error, we get

Ψ = δt(V
�,P Q(t))

n+1 − δt(V
P
(t)Q(t))

n+1
+ ∆tẼ(Q(tn+1

), uP,n+1)−∆tẼv(Q(tn+1
), dP

(tn+1
))

−∆tẼ(Q(t
n+1

), u(t
n+1

)) + ∆tẼv(Q(t
n+1

), d(t
n+1

)) + ∆t

1�

k=−1

O(||dP
(t

n+k
)− d(t

n+k
)||) + O(∆t

3
)

We will now try and simplify the flux terms in the above equation. If Ẽ is sufficiently

smooth, we can expand it as

Ẽ(Q(t
n+1

), uP,n+1) = Ẽ(Q(t
n+1

), u(t
n+1

)) +∇uẼ(Q(t
n+1

), u(t
n+1

))(uP,n+1 − u(t
n+1

))

+ O(||uP,n+1 − u(t
n+1

)||2) (35)

We know that

uP,n+1 =
δt(d

P
(t))n+1

∆t
(36)

u(t
n+1

) =
δt(d(t))n+1

∆t
+ O(∆t

2
) (37)

=⇒ uP,n+1 − u(t
n+1

) =
δt(d

P
(t)− d(t))n+1

∆t
+ O(∆t

2
) (38)
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Now, we have that

δt(d
P
(t)− d(t))n+1

∆t
=

1

∆t

�
3

2
(d

P
(t

n+1
)− d(t

n+1
))− 2(d

P
(t

n
)− d(t

n
)) +

1

2
(d

P
(t

n−1
)− d(t

n−1
))

�

=
1

∆t

�
3

2
(C2(t

n+1
,∆t(t

n+1
))∆t

q
(t

n+1
))− 2(C2(t

n
,∆t(t

n
))∆t

q
(t

n
))

+
1

2
(C2(t

n−1
,∆t(t

n−1
))∆t

q
(t

n−1
))

�

=
1

∆t

�
O(||dP

(t
n+1

)− d(t
n+1

)||) + O(||dP
(t

n
)− d(t

n
)||) + O(||dP

(t
n−1

)− d(t
n−1

)||)
�

=
1

∆t

1�

k=−1

O(||dP
(t

n+k
)− d(t

n+k
)||) (39)

So we get

uP,n+1 − u(t
n+1

) = ∆t
−1

1�

k=−1

O(||dP
(t

n+k
)− d(t

n+k
)||) + O(∆t

2
) (40)

Therefore, we have that

Ẽ(Q(t
n+1

), uP,n+1) = Ẽ(Q(t
n+1

), u(t
n+1

)) + ∆t
−1

1�

k=−1

O(||dP
(t

n+k
)− d(t

n+k
)||) + O(∆t

2
)

=⇒ ∆tẼ(Q(t
n+1

), uP,n+1) = ∆tẼ(Q(t
n+1

), u(t
n+1

)) +

1�

k=−1

O(||dP
(t

n+k
)− d(t

n+k
)||) + O(∆t

3
)

Similarly, if Ẽv is sufficiently smooth, we can expand it as

Ẽv(Q(t
n+1

), d
P
(t

n+1
)) = Ẽv(Q(t

n+1
), d(t

n+1
)) + O(||dP

(t
n+1

)− d(t
n+1

)||)
=⇒ ∆tẼv(Q(t

n+1
), d

P
(t

n+1
)) = ∆tẼv(Q(t

n+1
), d(t

n+1
)) + ∆tO(||dP

(t
n+1

)− d(t
n+1

)||)
(41)

Putting all of this back into the truncation error, we obtain

Ψ = δt(V
�,P Q(t))n+1 − δt(V

P
(t)Q(t))

n+1
+ (1 + ∆t)

1�

k=−1

O(||dP
(t

n+k
)− d(t

n+k
)||) + O(∆t

3
)

(42)

Now, we need to simplify the first term. We know that

δt(V
�,P )

n+1
= δt,x(d

P
(t))

n+1
(43)

V (t
n+1

) = δx(d(t))
n+1

(44)

Now, we know that (we have omitted the temporal superscript from δx to indicate that the

following equations hold at any time)

δx(d(t)− d
P
(t)) = O(||dP

(t)− d(t)||) (45)

V
P
(t) = V (t) + O(||dP

(t)− d(t)||) (46)
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Therefore, we have that

δx(d(t)) = δx(d
P
(t) + d(t)− d

P
(t)) = δx(d

P
(t)) + δx(d(t)− d

P
(t)) = V (t) (47)

=⇒ δx(d
P
(t)) = V (t)− δx(d(t)− d

P
(t)) = V

P
(t) + O(||dP

(t)− d(t)||) (48)

If we now apply the δt( · )
n+1

operator on both sides, we obtain

δt,x( d
P
(t))

n+1
= δt(V

P
(t))

n+1
+ δt(O(||dP

(t)− d(t)||) )
n+1

(49)

This gives us a difference equation of the form

δt(V
�,P − V

P
(t) + O(||dP

(t)− d(t)||))n+1
= 0 (50)

The solution to the above difference equation is

V �,P,n − V
P
(t

n
) + O(||dP

(t
n
)− d(t

n
)||) =

C1

3n
+ C2 (51)

where we need two initial conditions to solve for the constants. We can assume that at time

t0,

V �,P,0 − V
P
(t

0
) = 0 =⇒ C1

30
+ C2 = O(||dP

(t
0
)− d(t

0
)||) (52)

At the first time step, if we used a first-order temporal discretization, we would obtain

δ
1
t (V

�,P − V
P

+ O(||dP
(t

n
)− d(t

n
)||)1 = 0 (53)

=⇒ V �,P,0 − V
P
(t

0
) + O(||dP

(t
0
)− d(t

0
)||) = V �,P,1 − V

P
(t

1
) + O(||dP

(t
1
)− d(t

1
)||)

(54)

=⇒ C1

31
+ C2 = O(||dP

(t
0
)− d(t

0
)||) (55)

Therefore, we get that

C1 = 0, C2 = O(||dP
(t

0
)− d(t

0
)||) (56)

=⇒ V �,P,n = V
P
(t

n
) + O(||dP

(t
0
)− d(t

0
)||) + O(||dP

(t
n
)− d(t

n
)||) (57)

We can simplify the above equation using the assumption about the prediction error (26)

or we can assume that dP
(t0) = d(t0) to get

V �,P,n = V
P
(t

n
) + O(||dP

(t
n
)− d(t

n
)||) (58)

Thus, we see that the modified volume differs from the interpolated predicted volume volume

by a term which depends on the form of the predictor. If the predictor gives the exact mesh

positions, then the modified volume is equal to the interpolated true volume. Now, we can

use the above information to evaluate the truncation error term shown below

δt(V
�,P Q(t))

n+1 − δt(V
P
(t)Q(t))

n+1
= δt((V

�,P − V
P
(t))Q(t))

n+1
(59)

= δt((O(||dP
(t)− d(t)||)Q(t))

n+1
= δt(O(||dP

(t)− d(t)||))n+1

(60)
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From (32), we have that

δt(O(||dP
(t)− d(t)||))n+1

=

1�

k=−1

O(||dP
(t

n+k
)− d(t

n+k
)||) (61)

Thus plugging this into the truncation error, we obtain

Ψ = (1 + ∆t)

1�

k=−1

O(||dP
(t

n+k
)− d(t

n+k
)||) + O(∆t

3
) (62)

Thus, the truncation error depends on the temporal order of accuracy of the predictor in the

case of non-prescribed motion. In the case of prescribed motion, we obtain a second-order

accurate scheme.

If we assume that the prediction error, i.e., dP
(t)− d(t), is of polynomial form, we can

show that the above error reduces to

Ψ = ∆t

1�

k=−1

O(||dP
(t

n+k
)− d(t

n+k
)||) + O(∆t

3
) (63)


