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Abstract

Recent work on tiny machine learning (TinyML) has shown promising results on
deploying machine learning models on extremely resource constrained devices
such as microcontrollers. Existing approaches for model compression focus on
quantization and making smaller models. In this paper, we present a novel approach
for model compression that leverages data to generate efficient models. Specifically,
we use a pre-trained network to generate a weighted combination of basis images on
which it can achieve accuracy comparable to using the original images. The weights
in the combination are generated by a student network and contain class-specific
information that can be leveraged for image classification in lieu of the original
images by a relatively small extension network. On CIFAR-10, our approach
results in a reduction of 4x in parameters, 4x in FLOPS and an increase in 0.3%
accuracy relative to a ResNet-110 teacher model. On the speech commands dataset,
our approach generates a reduction of 8x in parameters, 8x in FLOPS with an
increase in accuracy of 2% relative to a ResNet-56 teacher model. On the Visual
Wake Words dataset, with image sizes ranging from 96-160 pixels, our approach
is able to generate accuracy within 0.5% of a MobilenetV2-0.35 teacher network
with a 10x reduction in parameters and 1.45x reduction in FLOPS.

1 Introduction

Model optimization is a fundamental problem in machine learning where a given model is optimized
to meet some criteria such as fitting within the budgets of a resource constrained device. Typical
examples include visual wake word detection which is a binary image classification problem
where the device must wake if it detects a person in its field of view. Current methods for model
optimization seek a Pareto-optimal front trading accuracy for FLOPS [4], representational efficiency
[10] or some other metric. A variety of approaches have been proposed to solve this problem ranging
from pruning [6], quantization [5], mixed precision [9], knowledge distillation [3] and neural
architecture search [2].

In this paper, we propose a novel approach to model optimization that is based on knowl-
edge distillation [3] and focus on the task of image classification. We start with a pre-trained teacher
model, but rather than train a student model to learn to classify like the teacher, we train a set of images
and a student network that predicts weights for these images. We refer to these images as basis images
as we map each original image to a linear combination of the weighted basis images. Therefore
these images can be loosely thought of as representing a basis that we project the original images onto.

Typically during training the network weights are updated while the input data remains constant. Our
approach can be considered as addressing the inverse of that process where we fix the weights of
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Figure 1: Overview of proposed approach

the teacher network and allow it to choose an alternative representation of the data by learning the
masked basis images. The motivation here being that if the network were allowed to choose its own
representation of the data it would come up with a much more efficient representation than the original.

Our contributions in this paper are

• We present a novel approach to model compression that leverages data for model compres-
sion and is able to produce efficient models

• Our approach produces a privacy-preserving representation of the data that can be used for
privacy-preserving training/inference tasks

2 Related Work

Our work touches on several areas of research ranging from model compression to dataset distillation.
In this section, we highlight some approaches that are most relevant to our work.

2.0.1 Model Compression

Model compression approaches range from quantization [5] to knowledge distillation [3]. In
knowledge distillation, a teacher model is used to train a student model to achieve comparable
performance on a given task. Our approach also uses a teacher model to train a student model.
However, rather than train both teacher and student to classify using a specialized loss, we leverage
an alternative data representation to transfer knowledge from the teacher to the student.

2.0.2 Dataset Distillation

Dataset distillation [11, 12] approaches aim to condense the knowledge from a large dataset into a
smaller one so that models trained on the smaller dataset can achieve accuracy comparable to the
original dataset. Our approach differs from these approaches in that rather than distill the dataset
into a smaller set of unique samples, we distill the dataset into a common set of basis images and
represent each sample as a linear combination of these basis images.
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3 Weighted Basis Images

3.1 Approach

Our approach is to use a fixed pre-trained teacher network to learn a linear combination of weighted
basis images on which the teacher’s accuracy is comparable to the original images. The weights
are generated by a student network which takes in an original image and outputs the weights for
that given image. Once we have trained the student network, we use its weights to train a smaller
extension network that learns to classify using the weights rather than the original images. Finally,
during inference we use the student and extension model to produce class predictions.

3.2 Problem Formulation

Consider a dataset U with samples
{(
x(i), y(i)

)
, i = 1, . . . , N

}
, where x(i) ∈ RD, y(i) ∈ R.

Assume we have a model T that is parameterized by weights W that takes in a data sample x(i) and
returns an output T (W,x(i)) ∈ RK . We train f by minimizing the loss `(T (W,x(i)), y(i)) where the
outputs are compared to the true labels y(i) using a loss criterion. For image classification, we use
cross entropy as our loss criterion. After training, we obtain an optimal set of weights W . We refer to
T as the teacher model.

Our goal is to approximate the input samples x(i) ∈ U , with a weighted linear combination
of M(< D < N) samples z(i) ∈ RD, i = 1, . . . ,M that minimizes the loss of T with weights W
but operates on these samples instead of the original samples. More specifically, we solve the
following problem

min
BM ,WS

1

N

N∑
i=1

`(f(W,B
(i)
M ), y(i)) (1)

where BM = AZ (2)
A = S(X) (3)

Here S is the student model (parameterized by weights WS) that takes in the original samples
(X ∈ RN×D) and returns the coefficients A ∈ RN×M . We refer to each of the z(i) as basis images
and BM ∈ RN×D is the weighted sum of the M basis images for each of the input samples.
Z ∈ RM×D is a matrix whose i-th row is z(i). We denote the (i, j) entry of A as a(ij) and constrain
the entries to satisfy |a(ij)| ≤ 1.

Having obtained A and Z, we can now transform the input samples x(i) into an M dimen-
sional space where each input sample is represented as an M dimensional vector a(i). It should be
noted that in general,

x(i) 6= B
(i)
M =

M∑
i=1

a(ij)z(i) (4)

so we have generated an alternative representation of the dataset that for the given weights W . With
this lower-dimensional representation of the data, we now train a smaller model E (the "extension")
that is parameterized by weights WE and takes in an M dimensional coefficient vector a(i) ∈ RM
and returns an output E(WE , a

(i)) that minimizes

min
WE

1

N

N∑
i=1

`(E(WE , a
(i)), y(i)) (5)

We now use the student model and its extension to do inference instead of the original teacher model.
We refer to the combination of the student model and its extension as basisnet.
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Figure 2: Accuracy of BasisNet on VWW and Imagenet datasets

3.3 Similarity Loss

In order to encourage the weights of similar classes to lie closer together, we introduce a similarity
loss which is defined below.

Lsim(x) = |max
x′∈C

d(x, x′)− min
x′ 6∈C

d(x, x′)− ε| (6)

We compute this for every batch where d(x, x′) is the Euclidean distance between the weights, ε > 0
is a learnable margin threshold and C is the class that x belongs to. Previous work [10] has defined a
similar loss (triplet loss) but the difference here is that we don’t use any anchor points and the margin
is learned. This loss is then combined with the cross-entropy loss as

L = Lcross−entropy + λLsim (7)

where λ is determined empirically.

3.4 Extending the weights

Finally, rather than just multiply each basis image with a single weight, we allow the each basis
image to have multiple weights with each weight acting on a separate part of the image. We split the
image into a P ×Q grid and assign a separate weight for each sub-grid.

4 Datasets

We evaluate our approach on two image classification datasets - Visual Wake Words [1] and ImageNet
[8]. Visual Wake Words is a person detection dataset based off the COCO dataset [7] where the labels
have been modified to support binary classification. This dataset is motivated by microcontroller
use-cases where the device needs to be woken when it detects a person. ImageNet is a large scale
benchmark for image classification. We use the Visual Wake Words dataset to understand how our
approach works in the binary classification task and then use ImageNet to test how well it scales to
larger datasets and multiple labels.

5 Experiments

5.1 Results

Figure 2 shows how basisnet performs on the Visual Wake Words and Imagenet dataset. Our approach
is able to significantly reduce the number of parameters and FLOPS on VWW. On Imagenet, we
are able to get within 8% of the teacher model with a slight increase in FLOPS and decrease in
parameters. It should be noted that for these results, we determined the student network architecture
by starting with the teacher architecture and removing layers or modifying other hyperparameters
manually. We would expect replacing this manual search with neural architecture search to produce
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Table 1: BasisNet-VWW
Operator Input Channels Layers

Conv2d 160× 160× 3 16 1
Bottleneck 80× 80× 16 8 1
Bottleneck 40× 40× 8 8 2
Bottleneck 20× 20× 8 16 3
Bottleneck 10× 10× 16 24 3
AvgPool 10× 10× 24 1
Conv2d 1× 1× 24 M 1

FC M × 1 20 1
FC 20× 1 20 1
FC 20× 1 K 1

Table 2: BasisNet-Imagenet
Operator Input Channels Layers

Conv2d 160× 160× 3 32 1
MBConv1 80× 80× 32 16 1
MBConv6 80× 80× 16 40 2
MBConv6 40× 40× 40 80 2
MBConv6 20× 20× 80 112 3
MBConv6 10× 10× 112 192 5
MBConv6 5× 5× 192 320 1
MBConv6 5× 5× 320 128 1
AvgPool 5× 5× 128 1
Conv2d 1× 1× 128 M 1

FC M × 1 800 1
FC 800× 1 800 1
FC 800× 1 K 1
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Figure 3: Variation of accuracy with number of basis images

superior results. For the Visual Wake Words dataset, our architecture closely follows the teacher
network. Our network consists of the first 10 layers of MobileNetV2-0.35 followed by a 3 layer
MLP whose details are shown in Table 1. For the Imagenet dataset, our architecture follows the
efficientnet-b0 network with a few modifications, followed by a 3 layer MLP. The details are shown
in Table 2.

5.1.1 Effects of increasing the number of basis images

Figure 3 shows the variation of the accuracy of the student and extension network as well as the
student and teacher network with increasing number of basis images for different images sizes on
the two datasets. For VWW, we see that increasing the number of basis images increases the overall
accuracy upto a certain threshold after which there is a shallow dropoff. Furthermore, this trend
holds for both the student and teacher combination and the student and extension combination. On
Imagenet, we see a similar trend for both the student and teacher combination and student and
extension model.

5.1.2 Accuracy of the student and extension networks
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Figure 4: Accuracy drop of
the extension network

Figure 4 shows how the accuracy drops for a fixed student and
teacher combination on the VWW and ImageNet datasets for one
of the data points shown in 3. We see that for VWW the student and
extension retains most of the accuracy of the original network with
only a 0.1% decrease in accuracy. On ImageNet, we see a greater
reduction in accuracy of about 5%.
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Figure 5: Comparison of basisnet with
mobilenetv1 and mobilenetv2 student architecture
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during training with and without similarity loss

5.1.3 Effects of not learning the basis images

5.1.4 Effects of architecture variation in the student network

Figure 5 shows the performance of basisnet if we replace the stu-
dent architecture shown in 1 with a MobilenetV1 based architecture
shown in 3. Here we see that with this new architecture we are
able to achieve a significant reduction in parameters as well with
comparable accuracy as the MobilenetV2 version. However, this
comes at a increase in FLOPS. This highlights the importance of
the architecture of the student network in determining an optimal
tradeoff between the different parameters.

5.1.5 Effects of the similarity loss

Figure 6 shows how the accuracy of the student and teacher network varies as we train on 96x96
images of the VWW dataset. We see that the similarity loss provides faster convergence and a slight
increase in accuracy.

5.1.6 Effects of adding more weights per basis image
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Figure 7: Variation of VWW accuracy
with multiple weights per basis image

Figure 7 shows the results of training 3 models on Ima-
genet. The first has 32 basis images, the second 128 basis
images and the third has 32 basis images but each basis
image has 4 weights (with each weight being applied to
a different quadrant of the image) resulting in a total of
128 weights. From the figure, we see that the accuracy of
the 32× 2× 2 model is comparable to that of using just
a single weight but 128 basis images, implying that the
total number of basis images is what determines the final
accuracy of the model rather than the number of weights
per basis image.

5.1.7 Visualizing
basis images and their reconstructions

In this section, we visualize the basis images as well the
reconstructions of the original images. Figure 8 shows
the original images on Imagenet and their reconstructions
using basis images. From these images, we see that the
reconstructions look nothing like the original images and
appear randomized.
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Table 3: BasisNet-VWW (MobilenetV1)
Operator Input Channels

Conv2d 160× 160× 3 32
DW + PW Conv 80× 80× 32 64
DW + PW Conv 80× 80× 64 128
DW + PW Conv 40× 40× 128 8

AvgPool 40× 40× 128
Conv2d 1× 1× 128 M

FC M × 1 20
FC 20× 1 20
FC 20× 1 K

Figure 8: Sample images from Imagenet (left) and their counterparts (right) using basis images

6 Conclusions and Future Work

In this work, we introduced a novel approach that learns an alternative data representation for model
compression and produces a privacy-preserving representation of the data. Our approach produces
efficient models and expands the Pareto curve offering more parameters one can tweak to obtain
optimal performance on a range of criteria.

As we discovered through our experiments, the architecture of the student network is cru-
cial to performance and so one future research direction would be adding neural architecture search
and see how it improves the performance of our approach. Apart from wake word detection, another
common use case in tinyML is continuously running low-power monitoring devices. In the future, we
could look into how to extend our approach to address the constraints of such devices. Finally, while
we have demonstrated our approach only on images, we could try to extend it to other modalities
such as audio or language and see how our approach generalizes to those domains.
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A Appendix A

To simplify notation, we will refer to B(i)
M as θ(i)M and l(f(W, θ

(i)
M ), y(i)) in the following as l(θ(i)M ).

In the following, we present a few propositions that will provide the basis for our approach.

Definition A.1. Define the M term approximation error of the i-th sample x(i) as

ε
(i)
M = x(i) − θ(i)M (8)

where θ(i)M is obtained by solving the problem defined in (1).
Proposition A.1. For a continuous twice-differentiable loss function `, the difference in loss between
the M and M − 1 term approximation is bounded by

`(θ
(i)
M )− `(θ(i)M−1) ≤ ||z(M)||

(
||g(θ

(i)
M )||+ 1

2
λH(θ

(i)
M−1) ||z(M)||

)
(9)

and we have

g(θ
(i)
M−1) = g(θ

(i)
M ) (10)

H(θ
(i)
M−1) � 0 (11)

H(θ
(i)
M ) � 0 (12)
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where g(θ
(i)
M ) is the gradient of the loss at θ(i)M and H(θ

(i)
M ) is the hessian of the loss at θ(i)M and

λH(θ
(i)
M ) is the largest eigenvalue of the H(θ

(i)
M ).

The proof is shown in Appendix A.
Proposition A.2. For a continuous twice-differentiable loss function `, the difference in loss between
the x(i) and the M term approximation is bounded by

`(x(i))− `(θ(i)M ) ≤ (D −M)

(
max

0≤k≤D
||z(k)||

(
||g(x(i))||+ 1

2
max

0≤k≤D

(
λH(θ

(i)
k )||z(k)||

)))
(13)

and we have that

g(θ
(i)
j ) = g(x(i)),∀j (14)

A.1 Proof of Proposition 4.1

Proof. Define γ(i)M as a sub-optimal approximation of θ(i)M that we construct as

γ
(i)
M = θ

(i)
M−1 + α(iM)z(M) (15)

since we know that

`(θ
(i)
M ) ≤ `(γ(i)M ) (16)

We will bound `(γ(i)M ) and then apply those bounds to `(θM ). Now we do a Taylor series expansion
of the loss function around θ(i)M−1

`(θ
(i)
M−1 + α(iM)z(M)) = `(θ

(i)
M−1) + α(iM)z(M)g(θ

(i)
M−1)T +

1

2
α(iM)z(M)H(θ

(i)
M−1)(α(iM)z(M))T

=⇒ `(γ
(i)
M ) = `(θ

(i)
M−1) + α(iM)z(M)g(θ

(i)
M−1)T +

1

2
α(iM)z(M)H(θ

(i)
M−1)(α(iM)z(M))T

=⇒ `(θ
(i)
M ) ≤ `(θ(i)M−1) + α(iM)z(M)g(θ

(i)
M−1)T +

1

2
α(iM)z(M)H(θ

(i)
M−1)(α(iM)z(M))T

(17)

Define ξ(i)M−1 as a sub-optimal approximation of θ(i)M−1 that we construct as

ξ
(i)
M−1 = θ

(i)
M − α

(iM)z(M) (18)

since we know that

`(θ
(i)
M−1) ≤ `(ξ(i)M−1) (19)

Now we do a Taylor series expansion of the loss function around θ(i)M

`(θ
(i)
M − α

(iM)z(M)) = `(θ
(i)
M )− α(iM)z(M)g(θ

(i)
M−1)T +

1

2
α(iM)z(M)H(θ

(i)
M )(α(iM)z(M))T

=⇒ `(ξ
(i)
M−1) = `(θ

(i)
M )− α(iM)z(M)g(θ

(i)
M )T +

1

2
α(iM)z(M)H(θ

(i)
M )(α(iM)z(M))T

=⇒ `(θ
(i)
M−1) ≤ `(θ(i)M )− α(iM)z(M)g(θ

(i)
M )T +

1

2
α(iM)z(M)H(θ

(i)
M )(α(iM)z(M))T

(20)
Adding (17) and (20), we get

0 ≤ α(iM)z(M)
(
g(θ

(i)
M−1)− g(θ

(i)
M )
)T

+
1

2
(α(iM))2z(M)

(
H(θ

(i)
M−1) +H(θ

(i)
M )
)

(z(M))T (21)

The only way that the above equation can hold for any value of α(iM), z(M) is if

g(θ
(i)
M−1) = g(θ

(i)
M ) (22)

H(θ
(i)
M−1) +H(θ

(i)
M ) � 0 (23)
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Since the hessian is a symmetric matrix and every symmetric matrix can be represented as the sum of
a positive semidefinite and negative semidefinite matrix, the above condition implies that

H(θ
(i)
M−1) � 0 (24)

H(θ
(i)
M ) � 0 (25)

Thus, we can describe the difference in loss between the two approximations as

`(θ
(i)
M )− `(θ(i)M−1) ≤ α(iM)z(M)g(θ

(i)
M )T +

1

2
α(iM)z(M)H(θ

(i)
M−1)(α(iM)z(M))T (26)

≤
∣∣∣α(iM)z(M)g(θ

(i)
M )T

∣∣∣+
1

2
(α(iM))2z(M)H(θ

(i)
M−1)(z(M))T (27)

≤
∣∣∣z(M)g(θ

(i)
M )T

∣∣∣+
1

2
z(M)H(θ

(i)
M−1)(z(M))T (28)

≤ ||z(M)|| ||g(θ
(i)
M )||+ 1

2
z(M)H(θ

(i)
M−1)(z(M))T (29)

(30)

We can simplify the second term on the RHS as

z(M)H(θ
(i)
M−1)(z(M))T = |z(M)H(θ

(i)
M−1)(z(M))T | (31)

≤ ||z(M)|| ||H(θ
(i)
M−1) (z(M))T || (32)

≤ ||z(M)|| ||H(θ
(i)
M−1)|| ||z(M)|| (33)

= (||H(θ
(i)
M−1)||)(||z(M)||2) (34)

= λH(θ
(i)
M−1)||z(M)||2 (35)

where λH(θ
(i)
M−1) is the largest eigenvalue of the Hessian H and we have used the fact that the

2-norm of the hessian is equal to the largest eigenvalue since H is symmetric. Putting this all together,
we get

`(θ
(i)
M )− `(θ(i)M−1) ≤ ||z(M)||

(
||g(θ

(i)
M )||+ 1

2
λH(θ

(i)
M−1) ||z(M)||

)
(36)

A.2 Proof of Proposition 4.2

Proof. First, note that when M = D, then θ(i)D = x(i) because z(j) = ej , α(ij) = x(ij). So, we can
use the result from A.1 to get

`(x(i))− `(θ(i)D−1) ≤
(
||g(θ

(i)
M )||+ 1

2
λH(θ

(i)
D−1)

)
(37)

Now we can do this for θ(i)D−1, . . . , θ
(i)
M+1 to get

`(θ
(i)
D−1)− `(θ(i)D−2) ≤ ||z(D−1)||

(
||g(θ

(i)
D−2)||+ 1

2
λH(θ

(i)
D−2) ||z(D−1)||

)
(38)

. . . (39)

`(θ
(i)
M+1)− `(θ(i)M ) ≤ ||z(M+1)||

(
||g(θ

(i)
M )||+ 1

2
λH(θ

(i)
M ) ||z(M+1)||

)
(40)

Adding all of these together, we get

`(x(i))− `(θ(i)M ) ≤
D∑

k=M+1

(
||z(k)||

(
||g(θ

(i)
k−1)||+ 1

2
λH(θ

(i)
k−1) ||z(k)||

))
(41)
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Since we also have that g(θ
(i)
j ) = g(θ

(i)
j−1),∀j, we can state that

g(θ
(i)
M ) = g(θ

(i)
M+1) = · · · = g(x(i)) (42)

This gives us

`(x(i))− `(θ(i)M ) ≤

(
D∑

k=M+1

||z(k)||

)
||g(x(i))||+

(
D∑

k=M+1

1

2
λH(θ

(i)
k−1) ||z(k)||2

)
(43)

≤ (D −M)

(
max

0≤k≤D
||z(k)||

(
||g(x(i))||+ 1

2
max

0≤k≤D

(
λH(θ

(i)
k )||z(k)||

)))
(44)

B Appendix B

B.1 Linear Regression

Consider a dataset with samples
{(
x(i), y(i)

)
, i = 1, . . . , N

}
, where x(i) ∈ RD×1, y(i) ∈ R. We

can express the linear regression problem as

min
θ

1

2
‖Xθ − y‖22 (45)

where X is a N × D matrix whose rows are (x(i))T , y is a N dimensional vector and θ is a D
dimensional vector of weights. The solution to the above problem can be obtained by solving the
normal equations shown below

XTXθ = XT y (46)
In our approach, we approximate the dataset with a linear combination of M < N synthetic data
samples

x(i) =

M∑
j=1

α(ij)z(j) + e(i) (47)

where the coefficients are defined as

α(ij) = (x(i))T z(j) (48)

We can express this in matrix form as

X = AZ + E (49)

A = XZT (50)

where A is a N ×M matrix containing the α(ij) coefficients, Z is a M ×D matrix whose rows are
the synthetic data samples (z(j))T and E is a N ×D error matrix whose rows are the error vectors
(e(i))T . Putting this all together, our goal is given an optimal weight θ and the original dataset, find
an optimal Z that minimizes the loss shown below.

min
Z

1

2
‖XZTZθ − y‖22 (51)

Since this is a non-convex problem, we can instead solve a semidefinite program with a change of
variables W = ZTZ

min
W

1

2
‖XWθ − y‖22

s.t. W � 0

W = WT

(52)

where since W is symmetric positive semi-definite, we can construct Z by using the first M eigen-
vectors from the eigenvalue decomposition of W as shown below.

W = QΛQT = (QΛ1/2)(QΛ1/2)T (53)

ZT = QMΛ
1/2
M (54)

11



where Q is the D ×D matrix of eigenvectors and QM is the D ×M matrix containing the first M
eigenvalues of Q and ΛM is a diagonal M ×M matrix containing the first M eigenvalues.

Taking the derivative w.r.t W we get

∇WL(W ) = ∇W
1

2
(XWθ − y)T (XWθ − y) (55)

= ∇W
1

2

(
(XWθ)TXWθ − (XWθ)T y − yT (XWθ) + yT y

)
(56)

= ∇W
1

2

(
θTWTXTXWθ − 2yTXWθ

)
(57)

= XTXWθθT −XT yθT (58)

Setting this to zero, we obtain

XTXWθθT = XT yθT (59)

Assuming XTX is invertible, we can simplify the above as

WθθT = (XTX)−1XT yθT = θθT (60)

Post multiplying by θ, we get

(WθθT )θ = (θθT )θ (61)

=⇒ ||θ||2Wθ = ||θ||2θ (62)
=⇒ Wθ = θ (63)

which implies that the optimal W will have θ as its eigenvector corresponding to the eigenvalue 1.
This makes sense because then the loss function can be expressed as

||XWθ − y|| = ||Xθ − y|| (64)

and thus the loss using the synthetic data matches that of using the original data and is independent
of M in the linear case.
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